Genital coinfections increase an individual’s risk of becoming infected with HIV-1 by sexual contact. Several mechanisms have been proposed to explain this, such as the presence of ulceration and bleeding caused by the coinfecting pathogen. Here we demonstrate that Langerhans cells (LCs) are involved in the increased susceptibility to HIV-1 in the presence of genital coinfections. Although LCs are a target for HIV-1 infection in genital tissues, we found that immature LCs did not efficiently mediate HIV-1 transmission in an ex vivo human skin explant model. However, the inflammatory stimuli TNF-α and Pam3CysSerLys4 (Pam3CSK4), the ligand for the TLR1/TLR2 heterodimer, strongly increased HIV-1 transmission by LCs through distinct mechanisms. TNF-α enhanced transmission by increasing HIV-1 replication in LCs, whereas Pam3CSK4 acted by increasing LC capture of HIV-1 and subsequent trans-infection of T cells. Genital infections such as Candida albicans and Neisseria gonorrhea not only triggered TLRs but also induced TNF-α production in vaginal and skin explants. Thus, during coinfection, LCs could be directly activated by pathogenic structures and indirectly activated by inflammatory factors, thereby increasing the risk of acquiring HIV-1. Our data demonstrate a decisive role for LCs in HIV-1 transmission during genital coinfections and suggest antiinflammatory therapies as potential strategies to prevent HIV-1 transmission.
Marein A.W.P. de Jong, Lot de Witte, Menno J. Oudhoff, Sonja I. Gringhuis, Philippe Gallay, Teunis B.H. Geijtenbeek
Plasmacytoid DCs (pDCs) have been implicated as crucial cells in antiviral immune responses. On recognizing HIV, they become activated, secreting large amounts of IFN-α and inflammatory cytokines, thereby potentiating innate and adaptive antiviral immune responses. Here, we have shown that HIV-stimulated human pDCs can also induce the differentiation of naive CD4+ T cells into Tregs with suppressive function. This differentiation was independent of pDC production of IFN-α and primarily dependent on pDC expression of indoleamine 2,3-dioxygenase, which was induced through the TLR/MyD88 pathway, following binding of HIV to CD4 and triggering of TLR7 by HIV genomic RNA. Functionally, the Tregs induced by pDCs were shown to inhibit the maturation of bystander conventional DCs. This study therefore reveals what we believe to be a novel mechanism by which pDC may regulate and potentially limit anti-HIV immune responses.
Olivier Manches, David Munn, Anahita Fallahi, Jeffrey Lifson, Laurence Chaperot, Joel Plumas, Nina Bhardwaj
The underlying molecular mechanisms that cause immune cells, mediators of our defense system, to promote tumor invasion and angiogenesis remain incompletely understood. Constitutively activated Stat3 in tumor cells has been shown to promote tumor invasion and angiogenesis. Therefore, we sought to determine whether Stat3 activation in tumor-associated inflammatory cells has a similar function. We found that Stat3 signaling mediates multidirectional crosstalk among tumor cells, myeloid cells in the tumor stroma, and ECs that contributes to tumor angiogenesis in mice. Myeloid-derived suppressor cells and macrophages isolated from mouse tumors displayed activated Stat3 and induced angiogenesis in an in vitro tube formation assay via Stat3 induction of angiogenic factors, including VEGF and bFGF. Stat3-regulated factors produced by both tumor cells and tumor-derived myeloid cells also induced constitutive activation of Stat3 in tumor endothelium, and inhibiting Stat3 in ECs substantially reduced in vitro tumor factor–induced endothelial migration and tube formation. In vivo assays demonstrated the requirement for Stat3 signaling in tumor-associated myeloid cells for tumor angiogenesis. Our results indicate that, by virtue of the ability of Stat3 in tumor cells and tumor-derived myeloid cells to upregulate expression of factors that activate Stat3 in ECs, Stat3 mediates multidirectional crosstalk among tumor cells, tumor-associated myeloid cells, and ECs that contributes to tumor angiogenesis.
Maciej Kujawski, Marcin Kortylewski, Heehyoung Lee, Andreas Herrmann, Heidi Kay, Hua Yu
The integrity of the endothelial monolayer is essential to blood vessel homeostasis and active regulation of endothelial permeability. The FGF system plays important roles in a wide variety of physiologic and pathologic conditions; however, its role in the adult vasculature has not been defined. To assess the role of the FGF system in the adult endothelial monolayer, we disrupted FGF signaling in bovine aortic endothelial cells and human saphenous vein endothelial cells in vitro and in adult mouse and rat endothelial cells in vivo using soluble FGF traps or a dominant inhibitor of all FGF receptors. The inhibition of FGF signaling using these approaches resulted in dissociation of the VE-cadherin/p120-catenin complex and disassembly of adherens and tight junctions, which progressed to loss of endothelial cells, severe impairment of the endothelial barrier function, and finally, disintegration of the vasculature. Thus, FGF signaling plays a key role in the maintenance of vascular integrity.
Masahiro Murakami, Loc T. Nguyen, Zhen W. Zhang, Karen L. Moodie, Peter Carmeliet, Radu V. Stan, Michael Simons
The progression from insulin resistance to type 2 diabetes is caused by the failure of pancreatic β cells to produce sufficient levels of insulin to meet the metabolic demand. Recent studies indicate that nutrient fluctuations and insulin resistance increase proinsulin synthesis in β cells beyond the capacity for folding of nascent polypeptides within the endoplasmic reticulum (ER) lumen, thereby disrupting ER homeostasis and triggering the unfolded protein response (UPR). Chronic ER stress promotes apoptosis, at least in part through the UPR-induced transcription factor C/EBP homologous protein (CHOP). We assessed the effect of Chop deletion in multiple mouse models of type 2 diabetes and found that Chop–/– mice had improved glycemic control and expanded β cell mass in all conditions analyzed. In both genetic and diet-induced models of insulin resistance, CHOP deficiency improved β cell ultrastructure and promoted cell survival. In addition, we found that isolated islets from Chop–/– mice displayed increased expression of UPR and oxidative stress response genes and reduced levels of oxidative damage. These findings suggest that CHOP is a fundamental factor that links protein misfolding in the ER to oxidative stress and apoptosis in β cells under conditions of increased insulin demand.
Benbo Song, Donalyn Scheuner, David Ron, Subramaniam Pennathur, Randal J. Kaufman
Hutchinson-Gilford progeria syndrome (HGPS), a rare disease that results in what appears to be premature aging, is caused by the production of a mutant form of prelamin A known as progerin. Progerin retains a farnesyl lipid anchor at its carboxyl terminus, a modification that is thought to be important in disease pathogenesis. Inhibition of protein farnesylation improves the hallmark nuclear shape abnormalities in HGPS cells and ameliorates disease phenotypes in mice harboring a knockin HGPS mutation (LmnaHG/+). The amelioration of disease, however, is incomplete, leading us to hypothesize that nonfarnesylated progerin also might be capable of eliciting disease. To test this hypothesis, we created knockin mice expressing nonfarnesylated progerin (LmnanHG/+). LmnanHG/+ mice developed the same disease phenotypes observed in LmnaHG/+ mice, although the phenotypes were milder, and mouse embryonic fibroblasts (MEFs) derived from these mice contained fewer misshapen nuclei. The steady-state levels of progerin in LmnanHG/+ MEFs and tissues were lower, suggesting a possible explanation for the milder phenotypes. These data support the concept that inhibition of protein farnesylation in progeria could be therapeutically useful but also suggest that this approach may be limited, as progerin elicits disease phenotypes whether or not it is farnesylated.
Shao H. Yang, Douglas A. Andres, H. Peter Spielmann, Stephen G. Young, Loren G. Fong
Spinal muscular atrophy (SMA), a motor neuron disease (MND) and one of the most common genetic causes of infant mortality, currently has no cure. Patients with SMA exhibit muscle weakness and hypotonia. Stem cell transplantation is a potential therapeutic strategy for SMA and other MNDs. In this study, we isolated spinal cord neural stem cells (NSCs) from mice expressing green fluorescent protein only in motor neurons and assessed their therapeutic effects on the phenotype of SMA mice. Intrathecally grafted NSCs migrated into the parenchyma and generated a small proportion of motor neurons. Treated SMA mice exhibited improved neuromuscular function, increased life span, and improved motor unit pathology. Global gene expression analysis of laser-capture-microdissected motor neurons from treated mice showed that the major effect of NSC transplantation was modification of the SMA phenotype toward the wild-type pattern, including changes in RNA metabolism proteins, cell cycle proteins, and actin-binding proteins. NSC transplantation positively affected the SMA disease phenotype, indicating that transplantation of NSCs may be a possible treatment for SMA.
Stefania Corti, Monica Nizzardo, Martina Nardini, Chiara Donadoni, Sabrina Salani, Dario Ronchi, Francesca Saladino, Andreina Bordoni, Francesco Fortunato, Roberto Del Bo, Dimitra Papadimitriou, Federica Locatelli, Giorgia Menozzi, Sandra Strazzer, Nereo Bresolin, Giacomo P. Comi
Herpes simplex virus type 1 (HSV-1) infection is the most common cause of sporadic, fatal encephalitis, but current understanding of how the virus interacts with cellular factors to regulate disease progression is limited. Here, we show that HSV-1 infection induced the expression of the cellular transcription factor early growth response 1 (Egr-1) in a human neuronal cell line. Egr-1 increased viral replication by activating promoters of viral productive cycle genes through binding to its corresponding sequences in the viral promoters. Mouse studies confirmed that Egr-1 expression was enhanced in HSV-1–infected brains and that Egr-1 functions to promote viral replication in embryonic fibroblasts. Furthermore, Egr-1 deficiency or knockdown of Egr-1 by a DNA-based enzyme greatly reduced the mortality of HSV-1–infected mice by decreasing viral loads in tissues. This study provides what we believe is the first evidence that Egr-1 increases the mortality of HSV-1 encephalitis by enhancing viral replication. Moreover, blocking this cellular machinery exploited by the virus could prevent host mortality.
Shih-Heng Chen, Hui-Wen Yao, I-Te Chen, Biehuoy Shieh, Ching Li, Shun-Hua Chen
Multiple sclerosis (MS) is a chronic inflammatory disease that results in demyelination in the central nervous system, and a defect in the regulatory function of CD4+CD25high T cells has been implicated in the pathogenesis of the disease. Here, we reanalyzed the function of this T cell subset in patients with MS, but we depleted cells expressing IL-7 receptor α-chain (CD127), a marker recently described as present on activated T cells but not Tregs. Similar to other studies, we observed a marked defect in the suppressive function of unseparated CD4+CD25high T cells isolated from MS patients. However, when CD127high cells were removed from the CD4+CD25high population, patient and control cells inhibited T cell proliferation and cytokine production equally. Likewise, when the CD25 gate used to sort the cells was stringent enough to eliminate CD127high cells, CD4+CD25high T cells from patients with MS and healthy individuals had similar regulatory function. Additional analysis indicated that the CD127high cells within the CD4+CD25high T cell population from patients with MS appeared more proliferative and secreted more IFN-γ and IL-2 than the same cells from healthy individuals. Taken together, we conclude that CD4+CD25highCD127low Tregs from MS patients and healthy individuals exhibit similar suppressive functions. The decreased inhibitory function of unfractioned CD4+CD25high cells previously observed might be due to abnormal activation of CD127high T cells in patients with MS.
Laure Michel, Laureline Berthelot, Ségolène Pettré, Sandrine Wiertlewski, Fabienne Lefrère, Cécile Braudeau, Sophie Brouard, Jean-Paul Soulillou, David-Axel Laplaud
Apelin and its cognate G protein–coupled receptor APJ constitute a signaling pathway with a positive inotropic effect on cardiac function and a vasodepressor function in the systemic circulation. The apelin-APJ pathway appears to have opposing physiological roles to the renin-angiotensin system. Here we investigated whether the apelin-APJ pathway can directly antagonize vascular disease-related Ang II actions. In ApoE-KO mice, exogenous Ang II induced atherosclerosis and abdominal aortic aneurysm formation; we found that coinfusion of apelin abrogated these effects. Similarly, apelin treatment rescued Ang II–mediated increases in neointimal formation and vascular remodeling in a vein graft model. NO has previously been implicated in the vasodepressor function of apelin; we found that apelin treatment increased NO bioavailability in ApoE-KO mice. Furthermore, infusion of an NO synthase inhibitor blocked the apelin-mediated decrease in atherosclerosis and aneurysm formation. In rat primary aortic smooth muscle cells, apelin inhibited Ang II–mediated transcriptional regulation of multiple targets as measured by reporter assays. In addition, we demonstrated by coimmunoprecipitation and fluorescence resonance energy transfer analysis that the Ang II and apelin receptors interacted physically. Taken together, these findings indicate that apelin signaling can block Ang II actions in vascular disease by increasing NO production and inhibiting Ang II cellular signaling.
Hyung J. Chun, Ziad A. Ali, Yoko Kojima, Ramendra K. Kundu, Ahmad Y. Sheikh, Rani Agrawal, Lixin Zheng, Nicholas J. Leeper, Nathan E. Pearl, Andrew J. Patterson, Joshua P. Anderson, Philip S. Tsao, Michael J. Lenardo, Euan A. Ashley, Thomas Quertermous
No posts were found with this tag.