Obesity is a worldwide epidemic resulting in part from the ubiquity of high-calorie foods and food images. Whether obese and nonobese individuals regulate their desire to consume high-calorie foods differently is not clear. We set out to investigate the hypothesis that circulating levels of glucose, the primary fuel source for the brain, influence brain regions that regulate the motivation to consume high-calorie foods. Using functional MRI (fMRI) combined with a stepped hyperinsulinemic euglycemic-hypoglycemic clamp and behavioral measures of interest in food, we have shown here that mild hypoglycemia preferentially activates limbic-striatal brain regions in response to food cues to produce a greater desire for high-calorie foods. In contrast, euglycemia preferentially activated the medial prefrontal cortex and resulted in less interest in food stimuli. Indeed, higher circulating glucose levels predicted greater medial prefrontal cortex activation, and this response was absent in obese subjects. These findings demonstrate that circulating glucose modulates neural stimulatory and inhibitory control over food motivation and suggest that this glucose-linked restraining influence is lost in obesity. Strategies that temper postprandial reductions in glucose levels might reduce the risk of overeating, particularly in environments inundated with visual cues of high-calorie foods.
Kathleen A. Page, Dongju Seo, Renata Belfort-DeAguiar, Cheryl Lacadie, James Dzuira, Sarita Naik, Suma Amarnath, R. Todd Constable, Robert S. Sherwin, Rajita Sinha
Aging is a major risk factor for the progression of neurodegenerative diseases, including Huntington disease (HD). Reduced neuronal IGF1 or Irs2 signaling have been shown to extend life span in mice. To determine whether Irs2 signaling modulates neurodegeneration in HD, we genetically modulated Irs2 concentrations in the R6/2 mouse model of HD. Increasing Irs2 levels in the brains of R6/2 mice significantly reduced life span and increased neuronal oxidative stress and mitochondrial dysfunction. In contrast, reducing Irs2 levels throughout the body (except in β cells, where Irs2 expression is needed to prevent diabetes onset; R6/2•Irs2+/–•Irs2βtg mice) improved motor performance and extended life span. The slower progression of HD-like symptoms was associated with increased nuclear localization of the transcription factor FoxO1 and increased expression of FoxO1-dependent genes that promote autophagy, mitochondrial function, and resistance to oxidative stress. Mitochondrial function improved and the number of autophagosomes increased in R6/2•Irs2+/–•Irs2βtg mice, whereas aggregate formation and oxidative stress decreased. Thus, our study suggests that Irs2 signaling can modulate HD progression. Since we found the expression of Irs2 to be normal in grade II HD patients, our results suggest that decreasing IRS2 signaling could be part of a therapeutic approach to slow the progression of HD.
Marianna Sadagurski, Zhiyong Cheng, Aldo Rozzo, Isabella Palazzolo, Gregory R. Kelley, Xiaocheng Dong, Dimitri Krainc, Morris F. White
Pneumococcal meningitis is the most common and severe form of bacterial meningitis. Fatality rates are substantial, and long-term sequelae develop in about half of survivors. Disease outcome has been related to the severity of the proinflammatory response in the subarachnoid space. The complement system, which mediates key inflammatory processes, has been implicated as a modulator of pneumococcal meningitis disease severity in animal studies. Additionally, SNPs in genes encoding complement pathway proteins have been linked to susceptibility to pneumococcal infection, although no associations with disease severity or outcome have been established. Here, we have performed a robust prospective nationwide genetic association study in patients with bacterial meningitis and found that a common nonsynonymous complement component 5 (C5) SNP (rs17611) is associated with unfavorable disease outcome. C5 fragment levels in cerebrospinal fluid (CSF) of patients with bacterial meningitis correlated with several clinical indicators of poor prognosis. Consistent with these human data, C5a receptor–deficient mice with pneumococcal meningitis had lower CSF wbc counts and decreased brain damage compared with WT mice. Adjuvant treatment with C5-specific monoclonal antibodies prevented death in all mice with pneumococcal meningitis. Thus, our results suggest C5-specific monoclonal antibodies could be a promising new antiinflammatory adjuvant therapy for pneumococcal meningitis.
Bianca Woehrl, Matthijs C. Brouwer, Carmen Murr, Sebastiaan G.B. Heckenberg, Frank Baas, Hans W. Pfister, Aeilko H. Zwinderman, B. Paul Morgan, Scott R. Barnum, Arie van der Ende, Uwe Koedel, Diederik van de Beek
A fundamental goal in cancer research is the identification of the cell types and signaling pathways capable of initiating and sustaining tumor growth, as this has the potential to reveal therapeutic targets. Stem and progenitor cells have been implicated in the genesis of select lymphoid malignancies. However, the identity of the cells in which mature lymphoid neoplasms are initiated remains unclear. Here, we investigate the origin of peripheral T cell lymphomas using mice in which Snf5, a chromatin remodelling–complex subunit with tumor suppressor activity, could be conditionally inactivated in developing T cells. In this model of mature peripheral T cell lymphomas, the cell of origin was a mature CD44hiCD122loCD8+ T cell that resembled a subset of memory cells that has capacity for self-renewal and robust expansion, features shared with stem cells. Further analysis showed that Snf5 loss led to activation of a Myc-driven signaling network and stem cell transcriptional program. Finally, lymphomagenesis and lymphoma proliferation depended upon TCR signaling, establishing what we believe to be a new paradigm for lymphoid malignancy growth. These findings suggest that the self-renewal and robust proliferative capacities of memory T cells are associated with vulnerability to oncogenic transformation. Our findings further suggest that agents that impinge upon TCR signaling may represent an effective therapeutic modality for this class of lethal human cancers.
Xi Wang, Miriam B.F. Werneck, Boris G. Wilson, Hye-Jung Kim, Michael J. Kluk, Christopher S. Thom, Jonathan W. Wischhusen, Julia A. Evans, Jonathan L. Jesneck, Phuong Nguyen, Courtney G. Sansam, Harvey Cantor, Charles W.M. Roberts
Immune cells are key regulators of neoplastic progression, which is often mediated through their release of cytokines. Inflammatory cytokines such as IL-6 exert tumor-promoting activities by driving growth and survival of neoplastic cells. However, whether these cytokines also have a role in recruiting mediators of adaptive anticancer immunity has not been investigated. Here, we report that homeostatic trafficking of tumor-reactive CD8+ T cells across microvascular checkpoints is limited in tumors despite the presence of inflammatory cytokines. Intravital imaging in tumor-bearing mice revealed that systemic thermal therapy (core temperature elevated to 39.5°C ± 0.5°C for 6 hours) activated an IL-6 trans-signaling program in the tumor blood vessels that modified the vasculature such that it could support enhanced trafficking of CD8+ effector/memory T cells (Tems) into tumors. A concomitant decrease in tumor infiltration by Tregs during systemic thermal therapy resulted in substantial enhancement of Tem/Treg ratios. Mechanistically, IL-6 produced by nonhematopoietic stromal cells acted cooperatively with soluble IL-6 receptor–α and thermally induced gp130 to promote E/P-selectin– and ICAM-1–dependent extravasation of cytotoxic T cells in tumors. Parallel increases in vascular adhesion were induced by IL-6/soluble IL-6 receptor–α fusion protein in mouse tumors and patient tumor explants. Finally, a causal link was established between IL-6–dependent licensing of tumor vessels for Tem trafficking and apoptosis of tumor targets. These findings suggest that the unique IL-6–rich tumor microenvironment can be exploited to create a therapeutic window to boost T cell–mediated antitumor immunity and immunotherapy.
Daniel T. Fisher, Qing Chen, Joseph J. Skitzki, Jason B. Muhitch, Lei Zhou, Michelle M. Appenheimer, Trupti D. Vardam, Emily L. Weis, Jessica Passanese, Wan-Chao Wang, Sandra O. Gollnick, Mark W. Dewhirst, Stefan Rose-John, Elizabeth A. Repasky, Heinz Baumann, Sharon S. Evans
Loss of memory B cells occurs from the onset of HIV-1 infection and persists into the chronic stages of infection. Lack of survival of these cells, even in subjects being treated, could primarily be the consequence of an altered local microenvironment induced by HIV infection. In this study we showed that memory B cell survival was significantly decreased in aviremic successfully treated (ST) subjects compared with subjects who control viral load as a result of natural immunity (elite controller [EC]) or with uninfected control (HIV–) subjects. The lower survival levels observed in memory B cells from ST subjects were the result of disrupted IL-2 signaling that led to increased transcriptional activity of Foxo3a and increased expression of its proapoptotic target TRAIL. Notably, memory B cell survival in ST subjects was significantly enhanced by the addition of exogenous IL-2 in a Foxo3a-dependent manner. We further showed that Foxo3a silencing by siRNA resulted in decreased expression of TRAIL and apoptosis levels in memory B cells from ST subjects. Our results thus establish a direct role for Foxo3a/TRAIL signaling in the persistence of memory B cells and provide a mechanism for the reduced survival of memory B cells during HIV infection. This knowledge could be exploited for the development of therapeutic and preventative HIV vaccines.
Julien van Grevenynghe, Rafael A. Cubas, Alessandra Noto, Sandrina DaFonseca, Zhong He, Yoav Peretz, Abdelali Filali-Mouhim, Franck P. Dupuy, Francesco A. Procopio, Nicolas Chomont, Robert S. Balderas, Elias A. Said, Mohamed-Rachid Boulassel, Cecile L. Tremblay, Jean-Pierre Routy, Rafick-Pierre Sékaly, Elias K. Haddad
Mast cell degranulation is important in the pathogenesis of anaphylaxis and allergic disorders. Many animal venoms contain components that can induce mast cell degranulation, and this has been thought to contribute to the pathology and mortality caused by envenomation. However, we recently reported evidence that mast cells can enhance the resistance of mice to the venoms of certain snakes and that mouse mast cell–derived carboxypeptidase A3 (CPA3) can contribute to this effect. Here, we investigated whether mast cells can enhance resistance to the venom of the Gila monster, a toxic component of that venom (helodermin), and the structurally similar mammalian peptide, vasoactive intestinal polypeptide (VIP). Using 2 types of mast cell–deficient mice, as well as mice selectively lacking CPA3 activity or the chymase mouse mast cell protease-4 (MCPT4), we found that mast cells and MCPT4, which can degrade helodermin, can enhance host resistance to the toxicity of Gila monster venom. Mast cells and MCPT4 also can limit the toxicity associated with high concentrations of VIP and can reduce the morbidity and mortality induced by venoms from 2 species of scorpions. Our findings support the notion that mast cells can enhance innate defense by degradation of diverse animal toxins and that release of MCPT4, in addition to CPA3, can contribute to this mast cell function.
Mitsuteru Akahoshi, Chang Ho Song, Adrian M. Piliponsky, Martin Metz, Andrew Guzzetta, Magnus Åbrink, Susan M. Schlenner, Thorsten B. Feyerabend, Hans-Reimer Rodewald, Gunnar Pejler, Mindy Tsai, Stephen J. Galli
Cancer immunotherapeutic approaches induce tumor-specific immune responses, in particular CTL responses, in many patients treated. However, such approaches are clinically beneficial to only a few patients. We set out to investigate one possible explanation for the failure of CTLs to eliminate tumors, specifically, the concept that this failure is not dependent on inhibition of T cell function. In a previous study, we found that in mice, myeloid-derived suppressor cells (MDSCs) are a source of the free radical peroxynitrite (PNT). Here, we show that pre-treatment of mouse and human tumor cells with PNT or with MDSCs inhibits binding of processed peptides to tumor cell–associated MHC, and as a result, tumor cells become resistant to antigen-specific CTLs. This effect was abrogated in MDSCs treated with a PNT inhibitor. In a mouse model of tumor-associated inflammation in which the antitumor effects of antigen-specific CTLs are eradicated by expression of IL-1β in the tumor cells, we determined that therapeutic failure was not caused by more profound suppression of CTLs by IL-1β–expressing tumors than tumors not expressing this proinflammatory cytokine. Rather, therapeutic failure was a result of the presence of PNT. Clinical relevance for these data was suggested by the observation that myeloid cells were the predominant source of PNT in human lung, pancreatic, and breast cancer samples. Our data therefore suggest what we believe to be a novel mechanism of MDSC-mediated tumor cell resistance to CTLs.
Tangying Lu, Rupal Ramakrishnan, Soner Altiok, Je-In Youn, Pingyan Cheng, Esteban Celis, Vladimir Pisarev, Simon Sherman, Michael B. Sporn, Dmitry Gabrilovich
The specialized epithelial cell of the kidney, the podocyte, has a complex actin-based cytoskeleton. Dynamic regulation of this cytoskeleton is required for efficient barrier function of the kidney. Podocytes are a useful cell type to study the control of the actin cytoskeleton in vivo, because disruption of components of the cytoskeleton results in podocyte damage, cell loss, and a prototypic injury response called focal segmental glomerulosclerosis (FSGS). Searching for actin regulatory proteins that are expressed in podocytes, we identified a RhoA-activated Rac1 GTPase-activating protein (Rac1-GAP), Arhgap24, that was upregulated in podocytes as they differentiated, both in vitro and in vivo. Increased levels of active Rac1 and Cdc42 were measured in Arhgap24 knockdown experiments, which influenced podocyte cell shape and membrane dynamics. Consistent with a role for Arhgap24 in normal podocyte functioning in vivo, sequencing of the ARHGAP24 gene in patients with FSGS identified a mutation that impaired its Rac1-GAP activity and was associated with disease in a family with FSGS. Thus, Arhgap24 contributes to the careful balancing of RhoA and Rac1 signaling in podocytes, the disruption of which may lead to kidney disease.
Shreeram Akilesh, Hani Suleiman, Haiyang Yu, M. Christine Stander, Peter Lavin, Rasheed Gbadegesin, Corinne Antignac, Martin Pollak, Jeffrey B. Kopp, Michelle P. Winn, Andrey S. Shaw
The acquisition of a mesenchymal phenotype is a critical step in the metastatic progression of epithelial carcinomas. Adherens junctions (AJs) are required for suppressing this epithelial-mesenchymal transition (EMT) but less is known about the role of tight junctions (TJs) in this process. Here, we investigated the functions of blood vessel epicardial substance (BVES, also known as POPDC1 and POP1), an integral membrane protein that regulates TJ formation. BVES was found to be underexpressed in all stages of human colorectal carcinoma (CRC) and in adenomatous polyps, indicating its suppression occurs early in transformation. Similarly, the majority of CRC cell lines tested exhibited decreased BVES expression and promoter DNA hypermethylation, a modification associated with transcriptional silencing. Treatment with a DNA-demethylating agent restored BVES expression in CRC cell lines, indicating that methylation represses BVES expression. Reexpression of BVES in CRC cell lines promoted an epithelial phenotype, featuring decreased proliferation, migration, invasion, and anchorage-independent growth; impaired growth of an orthotopic xenograft; and blocked metastasis. Conversely, interfering with BVES function by expressing a dominant-negative mutant in human corneal epithelial cells induced mesenchymal features. These biological outcomes were associated with changes in AJ and TJ composition and related signaling. Therefore, BVES prevents EMT, and its epigenetic silencing may be an important step in promoting EMT programs during colon carcinogenesis.
Christopher S. Williams, Baolin Zhang, J. Joshua Smith, Ashwath Jayagopal, Caitlyn W. Barrett, Christopher Pino, Patricia Russ, Sai H. Presley, DunFa Peng, Daniel O. Rosenblatt, Frederick R. Haselton, Jin-Long Yang, M. Kay Washington, Xi Chen, Steven Eschrich, Timothy J. Yeatman, Wael El-Rifai, R. Daniel Beauchamp, Min S. Chang
No posts were found with this tag.