Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Pulmonology

  • 213 Articles
  • 2 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 18
  • 19
  • 20
  • 21
  • 22
  • Next →
Squamous metaplasia amplifies pathologic epithelial-mesenchymal interactions in COPD patients
Jun Araya, … , David J. Erle, Stephen L. Nishimura
Jun Araya, … , David J. Erle, Stephen L. Nishimura
Published October 25, 2007
Citation Information: J Clin Invest. 2007. https://doi.org/10.1172/JCI32526.
View: Text | PDF

Squamous metaplasia amplifies pathologic epithelial-mesenchymal interactions in COPD patients

  • Text
  • PDF
Abstract

Squamous metaplasia (SM) is common in smokers and is associated with airway obstruction in chronic obstructive pulmonary disease (COPD). A major mechanism of airway obstruction in COPD is thickening of the small airway walls. We asked whether SM actively contributes to airway wall thickening through alteration of epithelial-mesenchymal interactions in COPD. Using immunohistochemical staining, airway morphometry, and fibroblast culture of lung samples from COPD patients; genome-wide analysis of an in vitro model of SM; and in vitro modeling of human airway epithelial-mesenchymal interactions, we provide evidence that SM, through the increased secretion of IL-1β, induces a fibrotic response in adjacent airway fibroblasts. We identify a pivotal role for integrin-mediated TGF-β activation in amplifying SM and driving IL-1β–dependent profibrotic mesenchymal responses. Finally, we show that SM correlates with increased severity of COPD and that fibroblast expression of the integrin αvβ8, which is the major mediator of airway fibroblast TGF-β activation, correlated with disease severity and small airway wall thickening in COPD. Our findings have identified TGF-β as a potential therapeutic target for COPD.

Authors

Jun Araya, Stephanie Cambier, Jennifer A. Markovics, Paul Wolters, David Jablons, Arthur Hill, Walter Finkbeiner, Kirk Jones, V. Courtney Broaddus, Dean Sheppard, Andrea Barzcak, Yuanyuan Xiao, David J. Erle, Stephen L. Nishimura

×

Synergistic airway gland mucus secretion in response to vasoactive intestinal peptide and carbachol is lost in cystic fibrosis
Jae Young Choi, … , John W. Hanrahan, Jeffrey J. Wine
Jae Young Choi, … , John W. Hanrahan, Jeffrey J. Wine
Published October 1, 2007
Citation Information: J Clin Invest. 2007;117(10):3118-3127. https://doi.org/10.1172/JCI31992.
View: Text | PDF

Synergistic airway gland mucus secretion in response to vasoactive intestinal peptide and carbachol is lost in cystic fibrosis

  • Text
  • PDF
Abstract

Cystic fibrosis (CF) is caused by dysfunction of the CF transmembrane conductance regulator (CFTR), an anion channel whose dysfunction leads to chronic bacterial and fungal airway infections via a pathophysiological cascade that is incompletely understood. Airway glands, which produce most airway mucus, do so in response to both acetylcholine (ACh) and vasoactive intestinal peptide (VIP). CF glands fail to secrete mucus in response to VIP, but do so in response to ACh. Because vagal cholinergic pathways still elicit strong gland mucus secretion in CF subjects, it is unclear whether VIP-stimulated, CFTR-dependent gland secretion participates in innate defense. It was recently hypothesized that airway intrinsic neurons, which express abundant VIP and ACh, are normally active and stimulate low-level gland mucus secretion that is a component of innate mucosal defenses. Here we show that low levels of VIP and ACh produced significant mucus secretion in human glands via strong synergistic interactions; synergy was lost in glands of CF patients. VIP/ACh synergy also existed in pig glands, where it was CFTR dependent, mediated by both Cl– and HCO3–, and clotrimazole sensitive. Loss of “housekeeping” gland mucus secretion in CF, in combination with demonstrated defects in surface epithelia, may play a role in the vulnerability of CF airways to bacterial infections.

Authors

Jae Young Choi, Nam Soo Joo, Mauri E. Krouse, Jin V. Wu, Robert C. Robbins, Juan P. Ianowski, John W. Hanrahan, Jeffrey J. Wine

×

Crosstalk between Gi and Gq/Gs pathways in airway smooth muscle regulates bronchial contractility and relaxation
Dennis W. McGraw, … , Marc E. Rothenberg, Stephen B. Liggett
Dennis W. McGraw, … , Marc E. Rothenberg, Stephen B. Liggett
Published May 1, 2007
Citation Information: J Clin Invest. 2007;117(5):1391-1398. https://doi.org/10.1172/JCI30489.
View: Text | PDF

Crosstalk between Gi and Gq/Gs pathways in airway smooth muscle regulates bronchial contractility and relaxation

  • Text
  • PDF
Abstract

Receptor-mediated airway smooth muscle (ASM) contraction via Gαq, and relaxation via Gαs, underlie the bronchospastic features of asthma and its treatment. Asthma models show increased ASM Gαi expression, considered the basis for the proasthmatic phenotypes of enhanced bronchial hyperreactivity to contraction mediated by M3-muscarinic receptors and diminished relaxation mediated by β2-adrenergic receptors (β2ARs). A causal effect between Gi expression and phenotype has not been established, nor have mechanisms whereby Gi modulates Gq/Gs signaling. To delineate isolated effects of altered Gi, transgenic mice were generated overexpressing Gαi2 or a Gαi2 peptide inhibitor in ASM. Unexpectedly, Gαi2 overexpression decreased contractility to methacholine, while Gαi2 inhibition enhanced contraction. These opposite phenotypes resulted from different crosstalk loci within the Gq signaling network: decreased phospholipase C and increased PKCα, respectively. Gαi2 overexpression decreased β2AR-mediated airway relaxation, while Gαi2 inhibition increased this response, consistent with physiologically relevant coupling of this receptor to both Gs and Gi. IL-13 transgenic mice (a model of asthma), which developed increased ASM Gαi, displayed marked increases in airway hyperresponsiveness when Gαi function was inhibited. Increased Gαi in asthma is therefore a double-edged sword: a compensatory event mitigating against bronchial hyperreactivity, but a mechanism that evokes β-agonist resistance. By selective intervention within these multipronged signaling modules, advantageous Gs/Gq activities could provide new asthma therapies.

Authors

Dennis W. McGraw, Jean M. Elwing, Kevin M. Fogel, Wayne C.H. Wang, Clare B. Glinka, Kathryn A. Mihlbachler, Marc E. Rothenberg, Stephen B. Liggett

×

SPDEF regulates goblet cell hyperplasia in the airway epithelium
Kwon-Sik Park, … , Gang Chen, Jeffrey A. Whitsett
Kwon-Sik Park, … , Gang Chen, Jeffrey A. Whitsett
Published April 2, 2007
Citation Information: J Clin Invest. 2007;117(4):978-988. https://doi.org/10.1172/JCI29176.
View: Text | PDF

SPDEF regulates goblet cell hyperplasia in the airway epithelium

  • Text
  • PDF
Abstract

Goblet cell hyperplasia and mucous hypersecretion contribute to the pathogenesis of chronic pulmonary diseases including cystic fibrosis, asthma, and chronic obstructive pulmonary disease. In the present work, mouse SAM pointed domain-containing ETS transcription factor (SPDEF) mRNA and protein were detected in subsets of epithelial cells lining the trachea, bronchi, and tracheal glands. SPDEF interacted with the C-terminal domain of thyroid transcription factor 1, activating transcription of genes expressed selectively in airway epithelial cells, including Sftpa, Scgb1a1, Foxj1, and Sox17. Expression of Spdef in the respiratory epithelium of adult transgenic mice caused goblet cell hyperplasia, inducing both acidic and neutral mucins in vivo, and stainined for both acidic and neutral mucins in vivo. SPDEF expression was increased at sites of goblet cell hyperplasia caused by IL-13 and dust mite allergen in a process that was dependent upon STAT-6. SPDEF was induced following intratracheal allergen exposure and after Th2 cytokine stimulation and was sufficient to cause goblet cell differentiation of Clara cells in vivo.

Authors

Kwon-Sik Park, Thomas R. Korfhagen, Michael D. Bruno, Joseph A. Kitzmiller, Huajing Wan, Susan E. Wert, Gurjit K. Khurana Hershey, Gang Chen, Jeffrey A. Whitsett

×

Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts
Vibha N. Lama, … , Fernando J. Martinez, Victor J. Thannickal
Vibha N. Lama, … , Fernando J. Martinez, Victor J. Thannickal
Published April 2, 2007
Citation Information: J Clin Invest. 2007;117(4):989-996. https://doi.org/10.1172/JCI29713.
View: Text | PDF

Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts

  • Text
  • PDF
Abstract

The origin and turnover of connective tissue cells in adult human organs, including the lung, are not well understood. Here, studies of cells derived from human lung allografts demonstrate the presence of a multipotent mesenchymal cell population, which is locally resident in the human adult lung and has extended life span in vivo. Examination of plastic-adherent cell populations in bronchoalveolar lavage samples obtained from 76 human lung transplant recipients revealed clonal proliferation of fibroblast-like cells in 62% (106 of 172) of samples. Immunophenotyping of these isolated cells demonstrated expression of vimentin and prolyl-4-hydroxylase, indicating a mesenchymal phenotype. Multiparametric flow cytometric analyses revealed expression of cell-surface proteins, CD73, CD90, and CD105, commonly found on mesenchymal stem cells (MSCs). Hematopoietic lineage markers CD14, CD34, and CD45 were absent. Multipotency of these cells was demonstrated by their capacity to differentiate into adipocytes, chondrocytes, and osteocytes. Cytogenetic analysis of cells from 7 sex-mismatched lung transplant recipients harvested up to 11 years after transplant revealed that 97.2% ± 2.1% expressed the sex genotype of the donor. The presence of MSCs of donor sex identity in lung allografts even years after transplantation provides what we believe to be the first evidence for connective tissue cell progenitors that reside locally within a postnatal, nonhematopoietic organ.

Authors

Vibha N. Lama, Lisa Smith, Linda Badri, Andrew Flint, Adin-Cristian Andrei, Susan Murray, Zhuo Wang, Hui Liao, Galen B. Toews, Paul H. Krebsbach, Marc Peters-Golden, David J. Pinsky, Fernando J. Martinez, Victor J. Thannickal

×

Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin
Liat Linde, … , Eitan Kerem, Batsheva Kerem
Liat Linde, … , Eitan Kerem, Batsheva Kerem
Published March 1, 2007
Citation Information: J Clin Invest. 2007;117(3):683-692. https://doi.org/10.1172/JCI28523.
View: Text | PDF

Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin

  • Text
  • PDF
Abstract

Aminoglycosides can readthrough premature termination codons (PTCs), permitting translation of full-length proteins. Previously we have found variable efficiency of readthrough in response to the aminoglycoside gentamicin among cystic fibrosis (CF) patients, all carrying the W1282X nonsense mutation. Here we demonstrate that there are patients in whom the level of CF transmembrane conductance regulator (CFTR) nonsense transcripts is markedly reduced, while in others it is significantly higher. Response to gentamicin was found only in patients with the higher level. We further investigated the possibility that the nonsense-mediated mRNA decay (NMD) might vary among cells and hence governs the level of nonsense transcripts available for readthrough. Our results demonstrate differences in NMD efficiency of CFTR transcripts carrying the W1282X mutation among different epithelial cell lines derived from the same tissue. Variability was also found for 5 physiologic NMD substrates, RPL3, SC35 1.6 kb, SC35 1.7 kb, ASNS, and CARS. Importantly, our results demonstrate the existence of cells in which NMD of all transcripts was efficient and others in which the NMD was less efficient. Downregulation of NMD in cells carrying the W1282X mutation increased the level of CFTR nonsense transcripts and enhanced the CFTR chloride channel activity in response to gentamicin. Together our results suggest that the efficiency of NMD might vary and hence have an important role in governing the response to treatments aiming to promote readthrough of PTCs in many genetic diseases.

Authors

Liat Linde, Stephanie Boelz, Malka Nissim-Rafinia, Yifat S. Oren, Michael Wilschanski, Yasmin Yaacov, Dov Virgilis, Gabriele Neu-Yilik, Andreas E. Kulozik, Eitan Kerem, Batsheva Kerem

×

Direct interaction with filamins modulates the stability and plasma membrane expression of CFTR
William R. Thelin, … , M. Jackson Stutts, Sharon L. Milgram
William R. Thelin, … , M. Jackson Stutts, Sharon L. Milgram
Published February 1, 2007
Citation Information: J Clin Invest. 2007;117(2):364-374. https://doi.org/10.1172/JCI30376.
View: Text | PDF

Direct interaction with filamins modulates the stability and plasma membrane expression of CFTR

  • Text
  • PDF
Abstract

The role of the cystic fibrosis transmembrane conductance regulator (CFTR) as a cAMP-dependent chloride channel on the apical membrane of epithelia is well established. However, the processes by which CFTR is regulated on the cell surface are not clear. Here we report the identification of a protein-protein interaction between CFTR and the cytoskeletal filamin proteins. Using proteomic approaches, we identified filamins as proteins that associate with the extreme CFTR N terminus. Furthermore, we identified a disease-causing missense mutation in CFTR, serine 13 to phenylalanine (S13F), which disrupted this interaction. In cells, filamins tethered plasma membrane CFTR to the underlying actin network. This interaction stabilized CFTR at the cell surface and regulated the plasma membrane dynamics and confinement of the channel. In the absence of filamin binding, CFTR was internalized from the cell surface, where it prematurely accumulated in lysosomes and was ultimately degraded. Our data demonstrate what we believe to be a previously unrecognized role for the CFTR N terminus in the regulation of the plasma membrane stability and metabolic stability of CFTR. In addition, we elucidate the molecular defect associated with the S13F mutation.

Authors

William R. Thelin, Yun Chen, Martina Gentzsch, Silvia M. Kreda, Jennifer L. Sallee, Cameron O. Scarlett, Christoph H. Borchers, Ken Jacobson, M. Jackson Stutts, Sharon L. Milgram

×

Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis
Javier Rangel-Moreno, … , Moises Selman, Troy D. Randall
Javier Rangel-Moreno, … , Moises Selman, Troy D. Randall
Published December 1, 2006
Citation Information: J Clin Invest. 2006;116(12):3183-3194. https://doi.org/10.1172/JCI28756.
View: Text | PDF

Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis

  • Text
  • PDF
Abstract

Bronchus-associated lymphoid tissue (BALT) was originally described as a mucosal lymphoid organ in the lungs of some species. However, while the lungs of naive mice and humans typically lack BALT, pulmonary infection in mice leads to the development of inducible BALT (iBALT), which is located in peribronchial, perivascular, and interstitial areas throughout the lung. Here we investigated whether iBALT forms in patients with a variety of interstitial lung diseases. We show that while iBALT can be found in the lungs of patients suffering from multiple diseases, well-developed iBALT is most prevalent in patients with pulmonary complications of RA and Sjögren syndrome. In these patients, iBALT consisted of numerous B cell follicles containing germinal centers and follicular dendritic cells. A loosely defined T cell area surrounded the B cell follicles while lymphatics and high endothelial venules were found at the B cell/T cell interface. Increased expression of lymphoid-organizing chemokines, such as CXCL13 and CCL21, as well as molecules involved in the immunopathology of RA, such as B cell–activating factor of the TNF family (BAFF), ICOS ligand, and lymphotoxin, correlated with more well-developed iBALT. Finally, the presence of iBALT correlated with tissue damage in the lungs of RA patients, suggesting that iBALT participates in local RA pathogenesis.

Authors

Javier Rangel-Moreno, Louise Hartson, Carmen Navarro, Miguel Gaxiola, Moises Selman, Troy D. Randall

×

Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation
Alexander Zarbock, … , Kai Singbartl, Klaus Ley
Alexander Zarbock, … , Kai Singbartl, Klaus Ley
Published December 1, 2006
Citation Information: J Clin Invest. 2006;116(12):3211-3219. https://doi.org/10.1172/JCI29499.
View: Text | PDF

Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation

  • Text
  • PDF
Abstract

Acute lung injury (ALI) causes high mortality, but its molecular mechanisms are poorly understood. Acid aspiration is a frequent cause of ALI, leading to neutrophil sequestration, increased permeability, and deterioration of gas exchange. We investigated the role of platelet-neutrophil interactions in a murine model of acid-induced ALI. Acid aspiration induced P-selectin–dependent platelet-neutrophil interactions in blood and in lung capillaries. Reducing circulating platelets or blocking P-selectin halted the development of ALI. Bone marrow chimeras showed that platelet, not endothelial, P-selectin was responsible for the injury. The interaction of platelets with neutrophils and endothelia was associated with TXA2 formation, with detrimental effects on permeability and tissue function. Activated platelets induced endothelial expression of ICAM-1 and increased neutrophil adhesion. Inhibition of platelet-neutrophil aggregation improved gas exchange, reduced neutrophil recruitment and permeability, and prolonged survival. The key findings were confirmed in a sepsis-induced model of ALI. These findings may translate into improved clinical treatments for ALI.

Authors

Alexander Zarbock, Kai Singbartl, Klaus Ley

×

Toll-like receptor 4 deficiency causes pulmonary emphysema
Xuchen Zhang, … , Lauren Cohn, Patty J. Lee
Xuchen Zhang, … , Lauren Cohn, Patty J. Lee
Published November 1, 2006
Citation Information: J Clin Invest. 2006;116(11):3050-3059. https://doi.org/10.1172/JCI28139.
View: Text | PDF

Toll-like receptor 4 deficiency causes pulmonary emphysema

  • Text
  • PDF
Abstract

TLRs have been studied extensively in the context of pathogen challenges, yet their role in the unchallenged lung is unknown. Given their direct interface with the external environment, TLRs in the lungs are prime candidates to respond to air constituents, namely particulates and oxygen. The mechanism whereby the lung maintains structural integrity in the face of constant ambient exposures is essential to our understanding of lung disease. Emphysema is characterized by gradual loss of lung elasticity and irreversible airspace enlargement, usually in the later decades of life and after years of insult, most commonly cigarette smoke. Here we show Tlr4–/– mice exhibited emphysema as they aged. Adoptive transfer experiments revealed that TLR4 expression in lung structural cells was required for maintaining normal lung architecture. TLR4 deficiency led to the upregulation of what we believe to be a novel NADPH oxidase (Nox), Nox3, in lungs and endothelial cells, resulting in increased oxidant generation and elastolytic activity. Treatment of Tlr4–/– mice or endothelial cells with chemical NADPH inhibitors or Nox3 siRNA reversed the observed phenotype. Our data identify a role for TLR4 in maintaining constitutive lung integrity by modulating oxidant generation and provide insights into the development of emphysema.

Authors

Xuchen Zhang, Peiying Shan, Ge Jiang, Lauren Cohn, Patty J. Lee

×
  • ← Previous
  • 1
  • 2
  • …
  • 18
  • 19
  • 20
  • 21
  • 22
  • Next →
Mucus tethering in asthma
Luke Bonser and colleagues characterize the composition and transport of pathogenic, asthma-associated mucus…
Published May 16, 2016
Scientific Show StopperPulmonology

Translating mechanical stress to fibrogenesis
Shaik Rahaman and colleagues reveal that TRPV4 channel activity links mechanical stress and pulmonary fibrosis…
Published November 3, 2014
Scientific Show StopperPulmonology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts