Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Metabolism

  • 620 Articles
  • 2 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 44
  • 45
  • 46
  • …
  • 61
  • 62
  • Next →
DGAT1-dependent triacylglycerol storage by macrophages protects mice from diet-induced insulin resistance and inflammation
Suneil K. Koliwad, … , Brian Hubbard, Robert V. Farese Jr.
Suneil K. Koliwad, … , Brian Hubbard, Robert V. Farese Jr.
Published February 1, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI36066.
View: Text | PDF | Corrigendum

DGAT1-dependent triacylglycerol storage by macrophages protects mice from diet-induced insulin resistance and inflammation

  • Text
  • PDF
Abstract

Diet-induced obesity (DIO) leads to inflammatory activation of macrophages in white adipose tissue (WAT) and subsequently to insulin resistance. PPARγ agonists are antidiabetic agents known to suppress inflammatory macrophage activation and to induce expression of the triacylglycerol (TG) synthesis enzyme acyl CoA:diacylglycerol acyltransferase 1 (DGAT1) in WAT and in adipocytes. Here, we investigated in mice the relationship between macrophage lipid storage capacity and DIO-associated inflammatory macrophage activation. Mice overexpressing DGAT1 in both macrophages and adipocytes (referred to herein as aP2-Dgat1 mice) were more prone to DIO but were protected against inflammatory macrophage activation, macrophage accumulation in WAT, systemic inflammation, and insulin resistance. To assess the contribution of macrophage DGAT1 expression to this phenotype, we transplanted wild-type mice with aP2-Dgat1 BM. These mice developed DIO similar to that of control mice but retained the protection from WAT inflammation and insulin resistance seen in aP2-Dgat1 mice. In isolated macrophages, Dgat1 mRNA levels correlated directly with TG storage capacity and inversely with inflammatory activation by saturated fatty acids (FAs). Moreover, PPARγ agonists increased macrophage Dgat1 mRNA levels, and the protective effects of these agonists against FA-induced inflammatory macrophage activation were absent in macrophages isolated from Dgat1-null mice. Thus, increasing DGAT1 expression in murine macrophages increases their capacity for TG storage, protects against FA-induced inflammatory activation, and is sufficient to reduce the inflammatory and metabolic consequences of DIO.

Authors

Suneil K. Koliwad, Ryan S. Streeper, Mara Monetti, Ivo Cornelissen, Liana Chan, Koji Terayama, Stephen Naylor, Meghana Rao, Brian Hubbard, Robert V. Farese Jr.

×

Palmitic acid mediates hypothalamic insulin resistance by altering PKC-θ subcellular localization in rodents
Stephen C. Benoit, … , William L. Holland, Deborah J. Clegg
Stephen C. Benoit, … , William L. Holland, Deborah J. Clegg
Published January 4, 2010
Citation Information: J Clin Invest. 2010;120(1):394-394. https://doi.org/10.1172/JCI36714C1.
View: Text | PDF | Amended Article

Palmitic acid mediates hypothalamic insulin resistance by altering PKC-θ subcellular localization in rodents

  • Text
  • PDF
Abstract

Authors

Stephen C. Benoit, Christopher J. Kemp, Carol F. Elias, William Abplanalp, James P. Herman, Stephanie Migrenne, Anne-Laure Lefevre, Céline Cruciani-Guglielmacci, Christophe Magnan, Fang Yu, Kevin Niswender, Boman G. Irani, William L. Holland, Deborah J. Clegg

×

Ablation of C/EBPβ alleviates ER stress and pancreatic β cell failure through the GRP78 chaperone in mice
Tomokazu Matsuda, … , Shizuo Akira, Masato Kasuga
Tomokazu Matsuda, … , Shizuo Akira, Masato Kasuga
Published December 1, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI39721.
View: Text | PDF

Ablation of C/EBPβ alleviates ER stress and pancreatic β cell failure through the GRP78 chaperone in mice

  • Text
  • PDF
Abstract

Pancreatic β cell failure is thought to underlie the progression from glucose intolerance to overt diabetes, and ER stress is implicated in such β cell dysfunction. We have now shown that the transcription factor CCAAT/enhancer-binding protein β (C/EBPβ) accumulated in the islets of diabetic animal models as a result of ER stress before the onset of hyperglycemia. Transgenic overexpression of C/EBPβ specifically in β cells of mice reduced β cell mass and lowered plasma insulin levels, resulting in the development of diabetes. Conversely, genetic ablation of C/EBPβ in the β cells of mouse models of diabetes, including Akita mice, which harbor a heterozygous mutation in Ins2 (Ins2WT/C96Y), and leptin receptor–deficient (Lepr–/–) mice, resulted in an increase in β cell mass and ameliorated hyperglycemia. The accumulation of C/EBPβ in pancreatic β cells reduced the abundance of the molecular chaperone glucose-regulated protein of 78 kDa (GRP78) as a result of suppression of the transactivation activity of the transcription factor ATF6α, thereby increasing the vulnerability of these cells to excess ER stress. Our results thus indicate that the accumulation of C/EBPβ in pancreatic β cells contributes to β cell failure in mice by enhancing susceptibility to ER stress.

Authors

Tomokazu Matsuda, Yoshiaki Kido, Shun-ichiro Asahara, Tsuneyasu Kaisho, Takashi Tanaka, Naoko Hashimoto, Yutaka Shigeyama, Akihiko Takeda, Tae Inoue, Yuki Shibutani, Maki Koyanagi, Tetsuya Hosooka, Michihiro Matsumoto, Hiroshi Inoue, Tohru Uchida, Masato Koike, Yasuo Uchiyama, Shizuo Akira, Masato Kasuga

×

Deletion of Fas in adipocytes relieves adipose tissue inflammation and hepatic manifestations of obesity in mice
Stephan Wueest, … , Marc Y. Donath, Daniel Konrad
Stephan Wueest, … , Marc Y. Donath, Daniel Konrad
Published December 1, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI38388.
View: Text | PDF

Deletion of Fas in adipocytes relieves adipose tissue inflammation and hepatic manifestations of obesity in mice

  • Text
  • PDF
Abstract

Adipose tissue inflammation is linked to the pathogenesis of insulin resistance. In addition to exerting death-promoting effects, the death receptor Fas (also known as CD95) can activate inflammatory pathways in several cell lines and tissues, although little is known about the metabolic consequence of Fas activation in adipose tissue. We therefore sought to investigate the contribution of Fas in adipocytes to obesity-associated metabolic dysregulation. Fas expression was markedly increased in the adipocytes of common genetic and diet-induced mouse models of obesity and insulin resistance, as well as in the adipose tissue of obese and type 2 diabetic patients. Mice with Fas deficiency either in all cells or specifically in adipocytes (the latter are referred to herein as AFasKO mice) were protected from deterioration of glucose homeostasis induced by high-fat diet (HFD). Adipocytes in AFasKO mice were more insulin sensitive than those in wild-type mice, and mRNA levels of proinflammatory factors were reduced in white adipose tissue. Moreover, AFasKO mice were protected against hepatic steatosis and were more insulin sensitive, both at the whole-body level and in the liver. Thus, Fas in adipocytes contributes to adipose tissue inflammation, hepatic steatosis, and insulin resistance induced by obesity and may constitute a potential therapeutic target for the treatment of insulin resistance and type 2 diabetes.

Authors

Stephan Wueest, Reto A. Rapold, Desiree M. Schumann, Julia M. Rytka, Anita Schildknecht, Ori Nov, Alexander V. Chervonsky, Assaf Rudich, Eugen J. Schoenle, Marc Y. Donath, Daniel Konrad

×

MAPK phosphatase-1 facilitates the loss of oxidative myofibers associated with obesity in mice
Rachel J. Roth, … , Gerald I. Shulman, Anton M. Bennett
Rachel J. Roth, … , Gerald I. Shulman, Anton M. Bennett
Published November 16, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI39054.
View: Text | PDF

MAPK phosphatase-1 facilitates the loss of oxidative myofibers associated with obesity in mice

  • Text
  • PDF
Abstract

Oxidative myofibers, also known as slow-twitch myofibers, help maintain the metabolic health of mammals, and it has been proposed that decreased numbers correlate with increased risk of obesity. The transcriptional coactivator PPARγ coactivator 1α (PGC-1α) plays a central role in maintaining levels of oxidative myofibers in skeletal muscle. Indeed, loss of PGC-1α expression has been linked to a reduction in the proportion of oxidative myofibers in the skeletal muscle of obese mice. MAPK phosphatase-1 (MKP-1) is encoded by mkp-1, a stress-responsive immediate-early gene that dephosphorylates MAPKs in the nucleus. Previously we showed that mice deficient in MKP-1 have enhanced energy expenditure and are resistant to diet-induced obesity. Here we show in mice that excess dietary fat induced MKP-1 overexpression in skeletal muscle, and that this resulted in reduced p38 MAPK–mediated phosphorylation of PGC-1α on sites that promoted its stability. Consistent with this, MKP-1–deficient mice expressed higher levels of PGC-1α in skeletal muscle than did wild-type mice and were refractory to the loss of oxidative myofibers when fed a high-fat diet. Collectively, these data demonstrate an essential role for MKP-1 as a regulator of the myofiber composition of skeletal muscle and suggest a potential role for MKP-1 in metabolic syndrome.

Authors

Rachel J. Roth, Annie M. Le, Lei Zhang, Mario Kahn, Varman T. Samuel, Gerald I. Shulman, Anton M. Bennett

×

LEPROT and LEPROTL1 cooperatively decrease hepatic growth hormone action in mice
Thierry Touvier, … , Bart Staels, Bernard Bailleul
Thierry Touvier, … , Bart Staels, Bernard Bailleul
Published November 9, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI34997.
View: Text | PDF

LEPROT and LEPROTL1 cooperatively decrease hepatic growth hormone action in mice

  • Text
  • PDF
Abstract

Growth hormone (GH) is a major metabolic regulator that functions by stimulating lipolysis, preventing protein catabolism, and decreasing insulin-dependent glucose disposal. Modulation of hepatic sensitivity to GH and the downstream effects on the GH/IGF1 axis are important events in the regulation of metabolism in response to variations in food availability. For example, during periods of reduced nutrient availability, the liver becomes resistant to GH actions. However, the mechanisms controlling hepatic GH resistance are currently unknown. Here, we investigated the role of 2 tetraspanning membrane proteins, leptin receptor overlapping transcript (LEPROT; also known as OB-RGRP) and LEPROT-like 1 (LEPROTL1), in controlling GH sensitivity. Transgenic mice expressing either human LEPROT or human LEPROTL1 displayed growth retardation, reduced plasma IGF1 levels, and impaired hepatic sensitivity to GH, as measured by STAT5 phosphorylation and Socs2 mRNA expression. These phenotypes were accentuated in transgenic mice expressing both proteins. Moreover, gene silencing of either endogenous Leprot or Leprotl1 in H4IIE hepatocytes increased GH signaling and enhanced cell-surface GH receptor. Importantly, we found that both LEPROT and LEPROTL1 expression were regulated in the mouse liver by physiologic and pathologic changes in glucose homeostasis. Together, these data provide evidence that LEPROT and LEPROTL1 influence liver GH signaling and that regulation of the genes encoding these proteins may constitute a molecular link between nutritional signals and GH actions on body growth and metabolism.

Authors

Thierry Touvier, Françoise Conte-Auriol, Olivier Briand, Céline Cudejko, Réjane Paumelle, Sandrine Caron, Eric Baugé, Yves Rouillé, Jean-Pierre Salles, Bart Staels, Bernard Bailleul

×

Autophagy regulates adipose mass and differentiation in mice
Rajat Singh, … , Gary J. Schwartz, Mark J. Czaja
Rajat Singh, … , Gary J. Schwartz, Mark J. Czaja
Published October 12, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI39228.
View: Text | PDF

Autophagy regulates adipose mass and differentiation in mice

  • Text
  • PDF
Abstract

The relative balance between the quantity of white and brown adipose tissue can profoundly affect lipid storage and whole-body energy homeostasis. However, the mechanisms regulating the formation, expansion, and interconversion of these 2 distinct types of fat remain unknown. Recently, the lysosomal degradative pathway of macroautophagy has been identified as a regulator of cellular differentiation, suggesting that autophagy may modulate this process in adipocytes. The function of autophagy in adipose differentiation was therefore examined in the current study by genetic inhibition of the critical macroautophagy gene autophagy-related 7 (Atg7). Knockdown of Atg7 in 3T3-L1 preadipocytes inhibited lipid accumulation and decreased protein levels of adipocyte differentiation factors. Knockdown of Atg5 or pharmacological inhibition of autophagy or lysosome function also had similar effects. An adipocyte-specific mouse knockout of Atg7 generated lean mice with decreased white adipose mass and enhanced insulin sensitivity. White adipose tissue in knockout mice had increased features of brown adipocytes, which, along with an increase in normal brown adipose tissue, led to an elevated rate of fatty acid, β-oxidation, and a lean body mass. Autophagy therefore functions to regulate body lipid accumulation by controlling adipocyte differentiation and determining the balance between white and brown fat.

Authors

Rajat Singh, Youqing Xiang, Yongjun Wang, Kiran Baikati, Ana Maria Cuervo, Yen K. Luu, Yan Tang, Jeffrey E. Pessin, Gary J. Schwartz, Mark J. Czaja

×

Suppression of KATP channel activity protects murine pancreatic β cells against oxidative stress
Belinda Gier, … , Martina Düfer, Gisela Drews
Belinda Gier, … , Martina Düfer, Gisela Drews
Published October 1, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI38817.
View: Text | PDF

Suppression of KATP channel activity protects murine pancreatic β cells against oxidative stress

  • Text
  • PDF
Abstract

The enhanced oxidative stress associated with type 2 diabetes mellitus contributes to disease pathogenesis. We previously identified plasma membrane–associated ATP-sensitive K+ (KATP) channels of pancreatic β cells as targets for oxidants. Here, we examined the effects of genetic and pharmacologic ablation of KATP channels on loss of mouse β cell function and viability following oxidative stress. Using mice lacking the sulfonylurea receptor type 1 (Sur1) subunit of KATP channels, we found that, compared with insulin secretion by WT islets, insulin secretion by Sur1–/– islets was less susceptible to oxidative stress induced by the oxidant H2O2. This was likely, at least in part, a result of the reduced ability of H2O2 to hyperpolarize plasma membrane potential and reduce cytosolic free Ca2+ concentration ([Ca2+]c) in the Sur1–/– β cells. Remarkably, Sur1–/– β cells were less prone to apoptosis induced by H2O2 or an NO donor than WT β cells, despite an enhanced basal rate of apoptosis. This protective effect was attributed to upregulation of the antioxidant enzymes SOD, glutathione peroxidase, and catalase. Upregulation of antioxidant enzymes and reduced sensitivity of Sur1–/– cells to H2O2-induced apoptosis were mimicked by treatment with the sulfonylureas tolbutamide and gliclazide. Enzyme upregulation and protection against oxidant-induced apoptosis were abrogated by agents lowering [Ca2+]c. Sur1–/– mice were less susceptible than WT mice to streptozotocin-induced β cell destruction and subsequent hyperglycemia and death, which suggests that loss of KATP channel activity may protect against streptozotocin-induced diabetes in vivo.

Authors

Belinda Gier, Peter Krippeit-Drews, Tatiana Sheiko, Lydia Aguilar-Bryan, Joseph Bryan, Martina Düfer, Gisela Drews

×

Hepatic energy state is regulated by glucagon receptor signaling in mice
Eric D. Berglund, … , Maureen J. Charron, David H. Wasserman
Eric D. Berglund, … , Maureen J. Charron, David H. Wasserman
Published July 6, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI38650.
View: Text | PDF

Hepatic energy state is regulated by glucagon receptor signaling in mice

  • Text
  • PDF
Abstract

The hepatic energy state, defined by adenine nucleotide levels, couples metabolic pathways with energy requirements. This coupling is fundamental in the adaptive response to many conditions and is impaired in metabolic disease. We have found that the hepatic energy state is substantially reduced following exercise, fasting, and exposure to other metabolic stressors in C57BL/6 mice. Glucagon receptor signaling was hypothesized to mediate this reduction because increased plasma levels of glucagon are characteristic of metabolic stress and because this hormone stimulates energy consumption linked to increased gluconeogenic flux through cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) and associated pathways. We developed what we believe to be a novel hyperglucagonemic-euglycemic clamp to isolate an increment in glucagon levels while maintaining fasting glucose and insulin. Metabolic stress and a physiological rise in glucagon lowered the hepatic energy state and amplified AMP-activated protein kinase signaling in control mice, but these changes were abolished in glucagon receptor–null mice and mice with liver-specific PEPCK-C deletion. 129X1/Sv mice, which do not mount a glucagon response to hypoglycemia, displayed an increased hepatic energy state compared with C57BL/6 mice in which glucagon was elevated. Taken together, these data demonstrate in vivo that the hepatic energy state is sensitive to glucagon receptor activation and requires PEPCK-C, thus providing new insights into liver metabolism.

Authors

Eric D. Berglund, Robert S. Lee-Young, Daniel G. Lustig, Sara E. Lynes, E. Patrick Donahue, Raul C. Camacho, M. Elizabeth Meredith, Mark A. Magnuson, Maureen J. Charron, David H. Wasserman

×

The diabetes gene Pdx1 regulates the transcriptional network of pancreatic endocrine progenitor cells in mice
Jennifer M. Oliver-Krasinski, … , Klaus H. Kaestner, Doris A. Stoffers
Jennifer M. Oliver-Krasinski, … , Klaus H. Kaestner, Doris A. Stoffers
Published June 1, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI37028.
View: Text | PDF

The diabetes gene Pdx1 regulates the transcriptional network of pancreatic endocrine progenitor cells in mice

  • Text
  • PDF
Abstract

Heterozygous mutations in the gene encoding the pancreatic homeodomain transcription factor pancreatic duodenal homeobox 1 (PDX1) are associated with maturity onset diabetes of the young, type 4 (MODY4) and type 2 diabetes. Pdx1 governs the early embryonic development of the pancreas and the later differentiation of the insulin-producing islet β cells of the endocrine compartment. We derived a Pdx1 hypomorphic allele that reveals a role for Pdx1 in the specification of endocrine progenitors. Mice homozygous for this allele displayed a selective reduction in endocrine lineages associated with decreased numbers of endocrine progenitors and a marked reduction in levels of mRNA encoding the proendocrine transcription factor neurogenin 3 (Ngn3). During development, Pdx1 occupies an evolutionarily conserved enhancer region of Ngn3 and interacts with the transcription factor one cut homeobox 1 (Hnf6) to activate this enhancer. Furthermore, mRNA levels of all 4 members of the transcription factor network that regulates Ngn3 expression, SRY-box containing gene 9 (Sox9), Hnf6, Hnf1b, and forkhead box A2 (Foxa2), were decreased in homozygous mice. Pdx1 also occupied regulatory sequences in Foxa2 and Hnf1b. Thus, Pdx1 contributes to specification of endocrine progenitors both by regulating expression of Ngn3 directly and by participating in a cross-regulatory transcription factor network during early pancreas development. These results provide insights that may be applicable to β cell replacement strategies involving the guided differentiation of ES cells or other progenitor cell types into the β cell lineage, and they suggest a molecular mechanism whereby human PDX1 mutations cause diabetes.

Authors

Jennifer M. Oliver-Krasinski, Margaret T. Kasner, Juxiang Yang, Michael F. Crutchlow, Anil K. Rustgi, Klaus H. Kaestner, Doris A. Stoffers

×
  • ← Previous
  • 1
  • 2
  • …
  • 44
  • 45
  • 46
  • …
  • 61
  • 62
  • Next →
Using SORLA to sort out human obesity
Vanessa Schmidt and colleagues demonstrate that the intracellular sorting receptor SORLA is an important regulator of lipid metabolism…
Published June 20, 2016
Scientific Show StopperMetabolism

Intracellular calcium leak recasts β cell landscape
Gaetano Santulli and colleagues reveal that RyR2 calcium channels in pancreatic β cells mediate insulin release and glucose homeostasis…
Published April 6, 2015
Scientific Show StopperMetabolism
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts