Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Inflammation

  • 303 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 28
  • 29
  • 30
  • 31
  • Next →
Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice
Ivana De Domenico, … , Diane M. Ward, Jerry Kaplan
Ivana De Domenico, … , Diane M. Ward, Jerry Kaplan
Published June 7, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI42011.
View: Text | PDF | Corrigendum

Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice

  • Text
  • PDF
Abstract

Hepcidin is a peptide hormone that regulates iron homeostasis and acts as an antimicrobial peptide. It is expressed and secreted by a variety of cell types in response to iron loading and inflammation. Hepcidin mediates iron homeostasis by binding to the iron exporter ferroportin, inducing its internalization and degradation via activation of the protein kinase Jak2 and the subsequent phosphorylation of ferroportin. Here we have shown that hepcidin-activated Jak2 also phosphorylates the transcription factor Stat3, resulting in a transcriptional response. Hepcidin treatment of ferroportin-expressing mouse macrophages showed changes in mRNA expression levels of a wide variety of genes. The changes in transcript levels for half of these genes were a direct effect of hepcidin, as shown by cycloheximide insensitivity, and dependent on the presence of Stat3. Hepcidin-mediated transcriptional changes modulated LPS-induced transcription in both cultured macrophages and in vivo mouse models, as demonstrated by suppression of IL-6 and TNF-α transcript and secreted protein. Hepcidin-mediated transcription in mice also suppressed toxicity and morbidity due to single doses of LPS, poly(I:C), and turpentine, which is used to model chronic inflammatory disease. Most notably, we demonstrated that hepcidin pretreatment protected mice from a lethal dose of LPS and that hepcidin-knockout mice could be rescued from LPS toxicity by injection of hepcidin. The results of our study suggest a new function for hepcidin in modulating acute inflammatory responses.

Authors

Ivana De Domenico, Tian Y. Zhang, Curry L. Koening, Ryan W. Branch, Nyall London, Eric Lo, Raymond A. Daynes, James P. Kushner, Dean Li, Diane M. Ward, Jerry Kaplan

×

CCR2 mediates hematopoietic stem and progenitor cell trafficking to sites of inflammation in mice
Yue Si, … , Kelsey Croft, Israel F. Charo
Yue Si, … , Kelsey Croft, Israel F. Charo
Published March 15, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI40310.
View: Text | PDF

CCR2 mediates hematopoietic stem and progenitor cell trafficking to sites of inflammation in mice

  • Text
  • PDF
Abstract

HSCs are BM-derived, self-renewing multipotent cells that develop into circulating blood cells. They have been implicated in the repair of inflamed parenchymal tissue, but the signals that regulate their trafficking to sites of inflammation are unknown. As monocytes are recruited to sites of inflammation via chemoattractants that activate CCR2 on their surface, we investigated whether HSCs are also recruited to sites of inflammation through CCR2. Initial analysis indicated that in mice, CCR2 was expressed on subsets of HSCs and hematopoietic progenitor cells (HPCs) and that freshly isolated primitive hematopoietic cells (Lin–c-Kit+ cells) responded to CCR2 ligands in vitro. In vivo analysis indicated that after instillation of thioglycollate to cause aseptic inflammation and after administration of acetaminophen to induce liver damage, endogenous HSCs/HPCs were actively recruited to the peritoneum and liver, respectively, in WT but not Ccr2–/– mice. HSCs/HPCs recovered from the peritoneum successfully engrafted into the BM of irradiated primary and secondary recipients, confirming their self renewal and multipotency. Importantly, administration of exogenous WT, but not Ccr2–/–, HSCs/HPCs accelerated resolution of acetaminophen-induced liver damage and triggered the expression of genes characteristic of the macrophage M2 or repair phenotype. These findings reveal what we believe to be a novel role for CCR2 in the homing of HSCs/HPCs to sites of inflammation and suggest new functions for chemokines in promoting tissue repair and regeneration.

Authors

Yue Si, Chia-Lin Tsou, Kelsey Croft, Israel F. Charo

×

The Down syndrome critical region gene 1 short variant promoters direct vascular bed–specific gene expression during inflammation in mice
Takashi Minami, … , William C. Aird, Tatsuhiko Kodama
Takashi Minami, … , William C. Aird, Tatsuhiko Kodama
Published July 13, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI35738.
View: Text | PDF

The Down syndrome critical region gene 1 short variant promoters direct vascular bed–specific gene expression during inflammation in mice

  • Text
  • PDF
Abstract

Down syndrome critical region gene 1 (DSCR-1) short variant (DSCR-1s) is an inhibitor of calcineurin/NFAT signaling encoded by exons 4–7 of DSCR1. We previously reported that VEGF induces DSCR-1s expression in endothelial cells, which in turn negatively feeds back to attenuate endothelial cell activation. Here, in order to characterize the role of the promoter that drives DSCR-1s expression in mediating inducible expression in vivo and to determine the functional relevance of DSCR-1s in inflammation, we targeted a DNA construct containing 1.7 kb of the human DSCR1s promoter coupled to the lacZ reporter to the hypoxanthine guanine phosphoribosyl transferase (Hprt) locus of mice. We determined that lacZ was uniformly expressed in the endothelium of transgenic embryos but was markedly downregulated postnatally. Systemic administration of VEGF or LPS in adult mice resulted in cyclosporine A–sensitive reactivation of the DSCR1s promoter and endogenous gene expression in a subset of organs, including the heart and brain. The DSCR1s promoter was similarly induced in the endothelium of tumor xenografts. In a mouse model of endotoxemia, DSCR-1s–deficient mice demonstrated increased sepsis mortality, whereas adenovirus-mediated DSCR-1s overexpression protected against LPS-induced lethality. Collectively, these data suggest that the DSCR1s promoter directs vascular bed–specific expression in activated endothelium and that DSCR-1s serves to dampen the host response to infection.

Authors

Takashi Minami, Kiichiro Yano, Mai Miura, Mika Kobayashi, Jun-ichi Suehiro, Patrick C. Reid, Takao Hamakubo, Sandra Ryeom, William C. Aird, Tatsuhiko Kodama

×

PMNs facilitate translocation of platelets across human and mouse epithelium and together alter fluid homeostasis via epithelial cell–expressed ecto-NTPDases
Thomas Weissmüller, … , Glenn T. Furuta, Sean P. Colgan
Thomas Weissmüller, … , Glenn T. Furuta, Sean P. Colgan
Published October 16, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI35874.
View: Text | PDF

PMNs facilitate translocation of platelets across human and mouse epithelium and together alter fluid homeostasis via epithelial cell–expressed ecto-NTPDases

  • Text
  • PDF
Abstract

Mucosal diseases are often characterized by an inflammatory infiltrate that includes polymorphonuclear leukocytes (PMNs), monocytes, lymphocytes, and platelets. A number of studies have suggested that the interaction of platelets with leukocytes has an essential proinflammatory role. Here, we examined whether platelets migrate across mucosal epithelium, as PMNs are known to do, and whether platelets influence epithelial cell function. Initial studies revealed that human platelets did not efficiently transmigrate across human epithelial cell monolayers. However, in the presence of human PMNs, platelet movement across the epithelium was proportional to the extent of PMN transmigration, and strategies that blocked PMN transmigration diminished platelet movement. Furthermore, platelet-PMN comigration was observed in intestinal tissue derived from human patients with inflammatory bowel disease (IBD). The translocated platelets were found to release large quantities of ATP, which was metabolized to adenosine via a 2-step enzymatic reaction mediated by ecto-nucleotidases, including CD73 and ecto–nucleoside triphosphate diphosphohydrolases (ecto-NTPDases), expressed on the apical membrane of the intestinal epithelial cells. In vitro studies and a mouse model of intestinal inflammation were employed to define a mechanism involving adenosine-mediated induction of electrogenic chloride secretion, with concomitant water movement into the intestinal lumen. These studies demonstrate that ecto-NTPDases are expressed on the apical membrane of epithelial cells and are involved in what we believe to be a previously unappreciated function for platelets in the inflamed intestine, which might promote bacterial clearance under inflammatory conditions.

Authors

Thomas Weissmüller, Eric L. Campbell, Peter Rosenberger, Melanie Scully, Paul L. Beck, Glenn T. Furuta, Sean P. Colgan

×

Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice
Yanqing Gong, … , Aleksey Shchurin, Jane Hoover-Plow
Yanqing Gong, … , Aleksey Shchurin, Jane Hoover-Plow
Published August 1, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI32750.
View: Text | PDF

Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice

  • Text
  • PDF
Abstract

Inflammation plays a critical role in the development of cardiovascular diseases. Infiltration of leukocytes to sites of injury requires their exit from the blood and migration across basement membrane; this process has been postulated to require remodeling of the ECM. Plasminogen (Plg) is a protease that binds to the ECM and, upon conversion to plasmin, degrades multiple ECM proteins. In addition, plasmin directly activates MMPs. Here, we used Plg–/– mice to investigate the role of Plg in inflammatory leukocyte migration. After induction of peritonitis by thioglycollate injection, we found that Plg–/– mice displayed diminished macrophage trans-ECM migration and decreased MMP-9 activation. Furthermore, injection of the active form of MMP-9 in Plg–/– mice rescued macrophage migration in this model. We used periaortic application of CaCl2 to induce abdominal aortic aneurysm (AAA) and found that Plg–/– mice displayed reduced macrophage infiltration and were protected from aneurysm formation. Administration of active MMP-9 to Plg–/– mice promoted macrophage infiltration and the development of AAA. These data suggest that Plg regulates macrophage migration in inflammation via activation of MMP-9, which, in turn, regulates the ability of the cells to migrate across ECM. Thus, targeting the Plg/MMP-9 pathway may be an attractive approach to regulate inflammatory responses and AAA development.

Authors

Yanqing Gong, Erika Hart, Aleksey Shchurin, Jane Hoover-Plow

×

Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin
Kai Kessenbrock, … , Reinhard Fässler, Dieter E. Jenne
Kai Kessenbrock, … , Reinhard Fässler, Dieter E. Jenne
Published June 20, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI34694.
View: Text | PDF

Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin

  • Text
  • PDF
Abstract

Neutrophil granulocytes form the body’s first line of antibacterial defense, but they also contribute to tissue injury and noninfectious, chronic inflammation. Proteinase 3 (PR3) and neutrophil elastase (NE) are 2 abundant neutrophil serine proteases implicated in antimicrobial defense with overlapping and potentially redundant substrate specificity. Here, we unraveled a cooperative role for PR3 and NE in neutrophil activation and noninfectious inflammation in vivo, which we believe to be novel. Mice lacking both PR3 and NE demonstrated strongly diminished immune complex–mediated (IC-mediated) neutrophil infiltration in vivo as well as reduced activation of isolated neutrophils by ICs in vitro. In contrast, in mice lacking just NE, neutrophil recruitment to ICs was only marginally impaired. The defects in mice lacking both PR3 and NE were directly linked to the accumulation of antiinflammatory progranulin (PGRN). Both PR3 and NE cleaved PGRN in vitro and during neutrophil activation and inflammation in vivo. Local administration of recombinant PGRN potently inhibited neutrophilic inflammation in vivo, demonstrating that PGRN represents a crucial inflammation-suppressing mediator. We conclude that PR3 and NE enhance neutrophil-dependent inflammation by eliminating the local antiinflammatory activity of PGRN. Our results support the use of serine protease inhibitors as antiinflammatory agents.

Authors

Kai Kessenbrock, Leopold Fröhlich, Michael Sixt, Tim Lämmermann, Heiko Pfister, Andrew Bateman, Azzaq Belaaouaj, Johannes Ring, Markus Ollert, Reinhard Fässler, Dieter E. Jenne

×

VAMP8 is the v-SNARE that mediates basolateral exocytosis in a mouse model of alcoholic pancreatitis
Laura I. Cosen-Binker, … , Wanjin Hong, Herbert Y. Gaisano
Laura I. Cosen-Binker, … , Wanjin Hong, Herbert Y. Gaisano
Published June 5, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI34672.
View: Text | PDF

VAMP8 is the v-SNARE that mediates basolateral exocytosis in a mouse model of alcoholic pancreatitis

  • Text
  • PDF
Abstract

In rodents and humans, alcohol exposure has been shown to predispose the pancreas to cholinergic or viral induction of pancreatitis. We previously developed a rodent model in which exposure to an ethanol (EtOH) diet, followed by carbachol (Cch) stimulation, redirects exocytosis from the apical to the basolateral plasma membrane of acinar cells, resulting in ectopic zymogen enzyme activation and pancreatitis. This redirection of exocytosis involves a soluble NSF attachment receptor (SNARE) complex consisting of syntaxin-4 and synapse-associated protein of 23 kDa (SNAP-23). Here, we investigated the role of the zymogen granule (ZG) SNARE vesicle-associated membrane protein 8 (VAMP8) in mediating basolateral exocytosis. In WT mice, in vitro EtOH exposure or EtOH diet reduced Cch-stimulated amylase release by redirecting apical exocytosis to the basolateral membrane, leading to alcoholic pancreatitis. Further reduction of zymogen secretion, caused by blockade of both apical and basolateral exocytosis and resulting in a more mild induction of alcoholic pancreatitis, was observed in Vamp8–/– mice in response to these treatments. In addition, although ZGs accumulated in Vamp8–/– acinar cells, ZG-ZG fusions were reduced compared with those in WT acinar cells, as visualized by electron microscopy. This reduction in ZG fusion may account for reduced efficiency of apical exocytosis in Vamp8–/– acini. These findings indicate that VAMP8 is the ZG-SNARE that mediates basolateral exocytosis in alcoholic pancreatitis and that VAMP8 is critical for ZG-ZG homotypic fusion.

Authors

Laura I. Cosen-Binker, Marcelo G. Binker, Cheng-Chun Wang, Wanjin Hong, Herbert Y. Gaisano

×

Unique CD14+ intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-γ axis
Nobuhiko Kamada, … , Kiyoko S. Akagawa, Toshifumi Hibi
Nobuhiko Kamada, … , Kiyoko S. Akagawa, Toshifumi Hibi
Published May 22, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI34610.
View: Text | PDF

Unique CD14+ intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-γ axis

  • Text
  • PDF
Abstract

Intestinal macrophages play a central role in regulation of immune responses against commensal bacteria. In general, intestinal macrophages lack the expression of innate-immune receptor CD14 and do not produce proinflammatory cytokines against commensal bacteria. In this study, we identified what we believe to be a unique macrophage subset in human intestine. This subset expressed both macrophage (CD14, CD33, CD68) and DC markers (CD205, CD209) and produced larger amounts of proinflammatory cytokines, such as IL-23, TNF-α, and IL-6, than typical intestinal resident macrophages (CD14–CD33+ macrophages). In patients with Crohn disease (CD), the number of these CD14+ macrophages were significantly increased compared with normal control subjects. In addition to increased numbers of cells, these cells also produced larger amounts of IL-23 and TNF-α compared with those in normal controls or patients with ulcerative colitis. In addition, the CD14+ macrophages contributed to IFN-γ production rather than IL-17 production by lamina propria mononuclear cells (LPMCs) dependent on IL-23 and TNF-α. Furthermore, the IFN-γ produced by LPMCs triggered further abnormal macrophage differentiation with an IL-23–hyperproducing phenotype. Collectively, these data suggest that this IL-23/IFN-γ–positive feedback loop induced by abnormal intestinal macrophages contributes to the pathogenesis of chronic intestinal inflammation in patients with CD.

Authors

Nobuhiko Kamada, Tadakazu Hisamatsu, Susumu Okamoto, Hiroshi Chinen, Taku Kobayashi, Toshiro Sato, Atsushi Sakuraba, Mina T. Kitazume, Akira Sugita, Kazutaka Koganei, Kiyoko S. Akagawa, Toshifumi Hibi

×

Gadd45β promotes hepatocyte survival during liver regeneration in mice by modulating JNK signaling
Salvatore Papa, … , Robert A. Anders, Guido Franzoso
Salvatore Papa, … , Robert A. Anders, Guido Franzoso
Published April 1, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI33913.
View: Text | PDF

Gadd45β promotes hepatocyte survival during liver regeneration in mice by modulating JNK signaling

  • Text
  • PDF
Abstract

In the liver, the JNK cascade is induced downstream of TNF receptors (TNFRs) in response to inflammatory, microbial, and toxic challenges. Sustained activation of JNK triggers programmed cell death (PCD), and hepatocyte survival during these challenges requires induction of the NF-κB pathway, which antagonizes this activation by upregulating target genes. Thus, modulation of JNK activity is crucial to the liver response to TNFR-mediated challenge. The basis for this modulation, however, is unknown. Here, we investigated the role of the NF-κB target Gadd45b in the regulation of hepatocyte fate during liver regeneration after partial hepatectomy. We generated Gadd45b–/– mice and found that they exhibited decreased hepatocyte proliferation and increased PCD during liver regeneration. Notably, JNK activity was markedly increased and sustained in livers of Gadd45b–/– mice compared with control animals after partial hepatectomy. Furthermore, imposition of a Jnk2-null mutation, attenuating JNK activity, completely rescued the regenerative response in Gadd45b–/– mice. Interestingly, Gadd45β ablation did not affect hepatotoxic JNK signaling after a TNFR-mediated immune challenge, suggesting specificity in the inducible hepatic program for JNK restraint activated during distinct TNFR-mediated challenges. These data provide a basis for JNK suppression during liver regeneration and identify Gadd45β as a potential therapeutic target in liver diseases.

Authors

Salvatore Papa, Francesca Zazzeroni, Yang-Xin Fu, Concetta Bubici, Kellean Alvarez, Kathryn Dean, Peter A. Christiansen, Robert A. Anders, Guido Franzoso

×

SR-BI protects against endotoxemia in mice through its roles in glucocorticoid production and hepatic clearance
Lei Cai, … , Lisa R. Tannock, Deneys R. van der Westhuyzen
Lei Cai, … , Lisa R. Tannock, Deneys R. van der Westhuyzen
Published December 6, 2007
Citation Information: J Clin Invest. 2007. https://doi.org/10.1172/JCI31539.
View: Text | PDF

SR-BI protects against endotoxemia in mice through its roles in glucocorticoid production and hepatic clearance

  • Text
  • PDF
Abstract

Septic shock results from an uncontrolled inflammatory response, mediated primarily by LPS. Cholesterol transport plays an important role in the host response to LPS, as LPS is neutralized by lipoproteins and adrenal cholesterol uptake is required for antiinflammatory glucocorticoid synthesis. In this study, we show that scavenger receptor B-I (SR-BI), an HDL receptor that mediates HDL cholesterol ester uptake into cells, is required for the normal antiinflammatory response to LPS-induced endotoxic shock. Despite elevated plasma HDL levels, SR-BI–null mice displayed an uncontrollable inflammatory cytokine response and a markedly higher lethality rate than control mice in response to LPS. In addition, SR-BI–null mice showed a lack of inducible glucocorticoid synthesis in response to LPS, bacterial infection, stress, or ACTH. Glucocorticoid insufficiency in SR-BI–null mice was due to primary adrenal malfunction resulting from deficient cholesterol delivery from HDL. Furthermore, corticosterone supplementation decreased the sensitivity of SR-BI–null mice to LPS. Plasma from control and SR-BI–null mice exhibited a similar ability to neutralize LPS, whereas SR-BI–null mice showed decreased plasma clearance of LPS into the liver and hepatocytes compared with normal mice. We conclude that SR-BI in mice is required for the antiinflammatory response to LPS-induced endotoxic shock, likely through its essential role in facilitating glucocorticoid production and LPS hepatic clearance.

Authors

Lei Cai, Ailing Ji, Frederick C. de Beer, Lisa R. Tannock, Deneys R. van der Westhuyzen

×
  • ← Previous
  • 1
  • 2
  • …
  • 28
  • 29
  • 30
  • 31
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts