Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Infectious disease

  • 356 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 33
  • 34
  • 35
  • 36
  • Next →
Key role of poly-γ-dl-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis
Stanislava Kocianova, Cuong Vuong, Yufeng Yao, Jovanka M. Voyich, Elizabeth R. Fischer, Frank R. DeLeo, Michael Otto
Stanislava Kocianova, Cuong Vuong, Yufeng Yao, Jovanka M. Voyich, Elizabeth R. Fischer, Frank R. DeLeo, Michael Otto
View: Text | PDF

Key role of poly-γ-dl-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis

  • Text
  • PDF
Abstract

Coagulase-negative staphylococci, with the leading species Staphylococcus epidermidis, are the predominant cause of hospital-acquired infections. Treatment is especially difficult owing to biofilm formation and frequent antibiotic resistance. However, virulence mechanisms of these important opportunistic pathogens have remained poorly characterized. Here we demonstrate that S. epidermidis secretes poly-γ-DL-glutamic acid (PGA) to facilitate growth and survival in the human host. Importantly, PGA efficiently sheltered S. epidermidis from key components of innate host defense, namely antimicrobial peptides and neutrophil phagocytosis, and was indispensable for persistence during device-related infection. Furthermore, PGA protected S. epidermidis from high salt concentration, a key feature of its natural environment, the human skin. Notably, PGA was synthesized by all tested strains of S. epidermidis and a series of closely related coagulase-negative staphylococci, most of which are opportunistic pathogens. Our study presents important novel biological functions for PGA and indicates that PGA represents an excellent target for therapeutic maneuvers aimed at treating disease caused by S. epidermidis and related staphylococci.

Authors

Stanislava Kocianova, Cuong Vuong, Yufeng Yao, Jovanka M. Voyich, Elizabeth R. Fischer, Frank R. DeLeo, Michael Otto

×

Dynamic changes in Mcl-1 expression regulate macrophage viability or commitment to apoptosis during bacterial clearance
Helen M. Marriott, Colin D. Bingle, Robert C. Read, Karen E. Braley, Guido Kroemer, Paul G. Hellewell, Ruth W. Craig, Moira K.B. Whyte, David H. Dockrell
Helen M. Marriott, Colin D. Bingle, Robert C. Read, Karen E. Braley, Guido Kroemer, Paul G. Hellewell, Ruth W. Craig, Moira K.B. Whyte, David H. Dockrell
View: Text | PDF

Dynamic changes in Mcl-1 expression regulate macrophage viability or commitment to apoptosis during bacterial clearance

  • Text
  • PDF
Abstract

Macrophages are critical effectors of bacterial clearance and must retain viability, despite exposure to toxic bacterial products, until key antimicrobial functions are performed. Subsequently, host-mediated macrophage apoptosis aids resolution of infection. The ability of macrophages to make this transition from resistance to susceptibility to apoptosis is important for effective host innate immune responses. We investigated the role of Mcl-1, an essential regulator of macrophage lifespan, in this switch from viability to apoptosis, using the model of pneumococcal-associated macrophage apoptosis. Upon exposure to pneumococci, macrophages initially upregulate Mcl-1 protein and maintain viability for up to 14 hours. Subsequently, macrophages reduce expression of full-length Mcl-1 and upregulate a 34-kDa isoform of Mcl-1 corresponding to a novel BH3-only splice variant, Mcl-1Exon-1. Change in expression of Mcl-1 protein is associated with mitochondrial membrane permeabilization, which is characterized by loss of mitochondrial inner transmembrane potential and translocation of cytochrome c and apoptosis-inducing factor. Following pneumococcal infection, macrophages expressing full-length human Mcl-1 as a transgene exhibit a delay in apoptosis and in bacterial killing. Mcl-1 transgenic mice clear pneumococci from the lung less efficiently than nontransgenic mice. Dynamic changes in Mcl-1 expression determine macrophage viability as well as antibacterial host defense.

Authors

Helen M. Marriott, Colin D. Bingle, Robert C. Read, Karen E. Braley, Guido Kroemer, Paul G. Hellewell, Ruth W. Craig, Moira K.B. Whyte, David H. Dockrell

×

Antiviral chemotherapy facilitates control of poxvirus infections through inhibition of cellular signal transduction
Hailin Yang, Sung-Kwon Kim, Mikyung Kim, Pedro A. Reche, Tiara J. Morehead, Inger K. Damon, Raymond M. Welsh, Ellis L. Reinherz
Hailin Yang, Sung-Kwon Kim, Mikyung Kim, Pedro A. Reche, Tiara J. Morehead, Inger K. Damon, Raymond M. Welsh, Ellis L. Reinherz
View: Text | PDF

Antiviral chemotherapy facilitates control of poxvirus infections through inhibition of cellular signal transduction

  • Text
  • PDF
Abstract

The EGF-like domain of smallpox growth factor (SPGF) targets human ErbB-1, inducing tyrosine phosphorylation of certain host cellular substrates via activation of the receptor’s kinase domain and thereby facilitating viral replication. Given these findings, low molecular weight organic inhibitors of ErbB-1 kinases might function as antiviral agents against smallpox. Here we show that CI-1033 and related 4-anilinoquinazolines inhibit SPGF-induced human cellular DNA synthesis, protein tyrosine kinase activation, and c-Cbl association with ErbB-1 and resultant internalization. Infection of monkey kidney BSC-40 and VERO-E6 cells in vitro by variola strain Solaimen is blocked by CI-1033, primarily at the level of secondary viral spreading. In an in vivo lethal vaccinia virus pneumonia model, CI-1033 alone promotes survival of animals, augments systemic T cell immunity and, in conjunction with a single dose of anti-L1R intracellular mature virus particle-specific mAb, fosters virtually complete viral clearance of the lungs of infected mice by the eighth day after infection. Collectively, these findings show that chemical inhibitors of host-signaling pathways exploited by viral pathogens may represent potent antiviral therapies.

Authors

Hailin Yang, Sung-Kwon Kim, Mikyung Kim, Pedro A. Reche, Tiara J. Morehead, Inger K. Damon, Raymond M. Welsh, Ellis L. Reinherz

×

Natural population dynamics and expansion of pathogenic clones of Staphylococcus aureus
Damian C. Melles, Raymond F.J. Gorkink, Hélène A.M. Boelens, Susan V. Snijders, Justine K. Peeters, Michael J. Moorhouse, Peter J. van der Spek, Willem B. van Leeuwen, Guus Simons, Henri A. Verbrugh, Alex van Belkum
Damian C. Melles, Raymond F.J. Gorkink, Hélène A.M. Boelens, Susan V. Snijders, Justine K. Peeters, Michael J. Moorhouse, Peter J. van der Spek, Willem B. van Leeuwen, Guus Simons, Henri A. Verbrugh, Alex van Belkum
View: Text | PDF

Natural population dynamics and expansion of pathogenic clones of Staphylococcus aureus

  • Text
  • PDF
Abstract

The population structure of Staphylococcus aureus carried by healthy humans was determined using a large strain collection of nonclinical origin (n = 829). High-throughput amplified fragment length polymorphism (AFLP) analysis revealed 3 major and 2 minor genetic clusters of S. aureus, which were corroborated by multilocus sequence typing. Major AFLP cluster I comprised 44.4% of the carriage isolates and showed additional heterogeneity whereas major AFLP groups II and III presented 2 homogeneous clusters, including 47.3% of all carriage isolates. Coanalysis of invasive S. aureus strains and epidemic methicillin-resistant S. aureus (MRSA) revealed that all major clusters contained invasive and multiresistant isolates. However, clusters and subclusters with overrepresentation of invasive isolates were also identified. Bacteremia in elderly adults, for instance, was caused by a IVa cluster–derived strain significantly more often than by strains from other AFLP clusters. Furthermore, expansion of multiresistant clones or clones associated with skin disease (impetigo) was detected, which suggests that epidemic potential is present in pathogenic strains of S. aureus. In addition, the virulence gene encoding Panton-Valentine leukocidin was significantly enriched in S. aureus strains causing abscesses and arthritis in comparison with the carriage group. We provide evidence that essentially any S. aureus genotype carried by humans can transform into a life-threatening human pathogen but that certain clones are more virulent than others.

Authors

Damian C. Melles, Raymond F.J. Gorkink, Hélène A.M. Boelens, Susan V. Snijders, Justine K. Peeters, Michael J. Moorhouse, Peter J. van der Spek, Willem B. van Leeuwen, Guus Simons, Henri A. Verbrugh, Alex van Belkum

×

Kinetics of protective antibodies are determined by the viral surface antigen
Daniel D. Pinschewer, Mar Perez, Eswaraka Jeetendra, Thomas Bächi, Edit Horvath, Hans Hengartner, Michael A. Whitt, Juan Carlos de la Torre, Rolf M. Zinkernagel
Daniel D. Pinschewer, Mar Perez, Eswaraka Jeetendra, Thomas Bächi, Edit Horvath, Hans Hengartner, Michael A. Whitt, Juan Carlos de la Torre, Rolf M. Zinkernagel
View: Text | PDF

Kinetics of protective antibodies are determined by the viral surface antigen

  • Text
  • PDF
Abstract

Delayed and weak virus neutralizing antibody (nAb) responses represent a hallmark correlating not only with the establishment of persistent infection but also with unsuccessful vaccine development. Using a reverse genetic approach, we evaluated possible underlying mechanisms in 2 widely studied viral infection models. Swapping the glycoproteins (GPs) of lymphocytic choriomeningitis virus (LCMV, naturally persisting, noncytolytic, inefficient nAb inducer) and vesicular stomatitis virus (VSV, nonpersisting, cytolytic, potent nAb inducer) transferred the only target of nAb’s from either virus to the other. We analyzed the nAb response to each of the 2 recombinant and parent viruses in infected mice and found that nAb kinetics were solely determined by the viral surface GP and not by the virus backbone. Moreover, the slowly and poorly nAb-triggering LCMV virion was a potent immunogenic matrix for the more antigenic VSV-GP. These findings indicate that the viral GP determines nAb kinetics largely independently of the specific viral infection context. They further suggest that structural features of viral GPs or coevolutionary adaptation of the virus’s GP to the host’s naive B cell repertoire, or both, may critically limit nAb kinetics and improvement of vaccine efficacy.

Authors

Daniel D. Pinschewer, Mar Perez, Eswaraka Jeetendra, Thomas Bächi, Edit Horvath, Hans Hengartner, Michael A. Whitt, Juan Carlos de la Torre, Rolf M. Zinkernagel

×

Cerebral vessel laminins and IFN-γ define Trypanosoma brucei brucei penetration of the blood-brain barrier
Willias Masocha, Brita Robertson, Martin E. Rottenberg, Jama Mhlanga, Lydia Sorokin, Krister Kristensson
Willias Masocha, Brita Robertson, Martin E. Rottenberg, Jama Mhlanga, Lydia Sorokin, Krister Kristensson
View: Text | PDF

Cerebral vessel laminins and IFN-γ define Trypanosoma brucei brucei penetration of the blood-brain barrier

  • Text
  • PDF
Abstract

Subspecies of Trypanosoma brucei cause severe brain diseases after penetration of the blood-brain barrier. We investigated whether cytokines that modulate inflammatory cell infiltration into the brain also influence T. brucei neuroinvasion. Migration of a rodent pathogenic T. brucei strain from the cerebral blood vessels into the brain parenchyma was impeded in IFN-γ–/–, IFN-γ receptor–/– (IFN-γR–/–), IL-12p40–/–, and recombinant activating gene–1–/– (RAG-1–/–) mice as compared with their WT littermates despite higher levels of parasitemia in the mutant strains. Parasites accumulated in the perivascular compartment, confined between the endothelial and the parenchymal basement membranes, in certain areas of the brains of IFN-γ–/–, IFN-γR–/–, and RAG-1–/– mice. This accumulation occurred around endothelial basement membranes containing the laminin α4 chain, while blood vessels showing robust laminin α5 chain immunostaining were not associated with parasite infiltration. The number of CD4+ and CD8+ T cells infiltrating the brain parenchyma was also reduced in the IFN-γ–/– and IFN-γR–/– mice. Our findings suggest that lymphocyte-derived IFN-γ facilitates trypanosome penetration across cerebral blood vessels and that the site of penetration is determined by the composition of the basement membranes of these vessels.

Authors

Willias Masocha, Brita Robertson, Martin E. Rottenberg, Jama Mhlanga, Lydia Sorokin, Krister Kristensson

×

Hepatitis C virus mutation affects proteasomal epitope processing
Ulrike Seifert, Heike Liermann, Vito Racanelli, Anne Halenius, Manfred Wiese, Heiner Wedemeyer, Thomas Ruppert, Kay Rispeter, Peter Henklein, Alice Sijts, Hartmut Hengel, Peter-M. Kloetzel, Barbara Rehermann
Ulrike Seifert, Heike Liermann, Vito Racanelli, Anne Halenius, Manfred Wiese, Heiner Wedemeyer, Thomas Ruppert, Kay Rispeter, Peter Henklein, Alice Sijts, Hartmut Hengel, Peter-M. Kloetzel, Barbara Rehermann
View: Text | PDF

Hepatitis C virus mutation affects proteasomal epitope processing

  • Text
  • PDF
Abstract

The high incidence of hepatitis C virus (HCV) persistence raises the question of how HCV interferes with host immune responses. Studying a single-source HCV outbreak, we identified an HCV mutation that impaired correct carboxyterminal cleavage of an immunodominant HLA-A2–restricted CD8 cell epitope that is frequently recognized by recovered patients. The mutation, a conservative HCV nonstructural protein 3 (NS3) tyrosine to phenylalanine substitution, was absent in 54 clones of the infectious source, but present in 15/21 (71%) HLA-A2–positive and in 11/24 (46%) HLA-A2–negative patients with chronic hepatitis C. In order to analyze whether the mutation affected the processing of the HLA-A2–restricted CD8 cell epitope, mutant and wild-type NS3 polypeptides were digested in vitro with 20S constitutive proteasomes and with immunoproteasomes. The presence of the mutation resulted in impaired carboxyterminal cleavage of the epitope. In order to analyze whether impaired epitope processing affected T cell priming in vivo, HLA-A2–transgenic mice were infected with vaccinia viruses encoding either wild-type or mutant HCV NS3. The mutant induced fewer epitope-specific, IFN-γ;–producing and fewer tetramer+ cells than the wild type. These data demonstrate how a conservative mutation in the flanking region of an HCV epitope impairs the induction of epitope-specific CD8+ T cells and reveal a mechanism that may contribute to viral sequence evolution in infected patients.

Authors

Ulrike Seifert, Heike Liermann, Vito Racanelli, Anne Halenius, Manfred Wiese, Heiner Wedemeyer, Thomas Ruppert, Kay Rispeter, Peter Henklein, Alice Sijts, Hartmut Hengel, Peter-M. Kloetzel, Barbara Rehermann

×

Antagonistic antibody prevents toll-like receptor 2–driven lethal shock-like syndromes
Guangxun Meng, Mark Rutz, Matthias Schiemann, Jochen Metzger, Alina Grabiec, Ralf Schwandner, Peter B. Luppa, Frank Ebel, Dirk H. Busch, Stefan Bauer, Hermann Wagner, Carsten J. Kirschning
Guangxun Meng, Mark Rutz, Matthias Schiemann, Jochen Metzger, Alina Grabiec, Ralf Schwandner, Peter B. Luppa, Frank Ebel, Dirk H. Busch, Stefan Bauer, Hermann Wagner, Carsten J. Kirschning
View: Text | PDF

Antagonistic antibody prevents toll-like receptor 2–driven lethal shock-like syndromes

  • Text
  • PDF
Abstract

Hyperactivation of immune cells by bacterial products through toll-like receptors (TLRs) is thought of as a causative mechanism of septic shock pathology. Infections with Gram-negative or Gram-positive bacteria provide TLR2-specific agonists and are the major cause of severe sepsis. In order to intervene in TLR2-driven toxemia, we raised mAb’s against the extracellular domain of TLR2. Surface plasmon resonance analysis showed direct and specific interaction of TLR2 and immunostimulatory lipopeptide, which was blocked by T2.5 in a dose-dependent manner. Application of mAb T2.5 inhibited cell activation in experimental murine models of infection. T2.5 also antagonized TLR2-specific activation of primary human macrophages. TLR2 surface expression by murine macrophages was surprisingly weak, while both intra- and extracellular expression increased upon systemic microbial challenge. Systemic application of T2.5 upon lipopeptide challenge inhibited release of inflammatory mediators such as TNF-α and prevented lethal shock-like syndrome in mice. Twenty milligrams per kilogram of T2.5 was sufficient to protect mice, and administration of 40 mg/kg of T2.5 was protective even 3 hours after the start of otherwise lethal challenge with Bacillus subtilis. These results indicate that epitope-specific binding of exogenous ligands precedes specific TLR signaling and suggest therapeutic application of a neutralizing anti-TLR2 antibody in acute infection.

Authors

Guangxun Meng, Mark Rutz, Matthias Schiemann, Jochen Metzger, Alina Grabiec, Ralf Schwandner, Peter B. Luppa, Frank Ebel, Dirk H. Busch, Stefan Bauer, Hermann Wagner, Carsten J. Kirschning

×

Pre–B cell colony–enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis
Song Hui Jia, Yue Li, Jean Parodo, Andras Kapus, Lingzhi Fan, Ori D. Rotstein, John C. Marshall
Song Hui Jia, Yue Li, Jean Parodo, Andras Kapus, Lingzhi Fan, Ori D. Rotstein, John C. Marshall
View: Text | PDF | Erratum

Pre–B cell colony–enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis

  • Text
  • PDF
Abstract

Pre–B cell colony-enhancing factor (PBEF) is a highly conserved 52-kDa protein, originally identified as a growth factor for early stage B cells. We show here that PBEF is also upregulated in neutrophils by IL-1β and functions as a novel inhibitor of apoptosis in response to a variety of inflammatory stimuli. Induction of PBEF occurs 5–10 hours after LPS exposure. Prevention of PBEF translation with an antisense oligonucleotide completely abrogates the inhibitory effects of LPS, IL-1, GM-CSF, IL-8, and TNF-α on neutrophil apoptosis. Immunoreactive PBEF is detectable in culture supernatants from LPS-stimulated neutrophils, and a recombinant PBEF fusion protein inhibits neutrophil apoptosis. PBEF is also expressed in neutrophils from critically ill patients with sepsis in whom rates of apoptosis are profoundly delayed. Expression occurs at higher levels than those seen in experimental inflammation, and a PBEF antisense oligonucleotide significantly restores the normal kinetics of apoptosis in septic polymorphonuclear neutrophils. Inhibition of apoptosis by PBEF is associated with reduced activity of caspases-8 and -3, but not caspase-9. These data identify PBEF as a novel inflammatory cytokine that plays a requisite role in the delayed neutrophil apoptosis of clinical and experimental sepsis.

Authors

Song Hui Jia, Yue Li, Jean Parodo, Andras Kapus, Lingzhi Fan, Ori D. Rotstein, John C. Marshall

×

TNF-α is a critical negative regulator of type 1 immune activation during intracellular bacterial infection
Anna Zganiacz, Michael Santosuosso, Jun Wang, Tony Yang, Lihao Chen, Maria Anzulovic, Scott Alexander, Brigitte Gicquel, Yonghong Wan, Jonathan Bramson, Mark Inman, Zhou Xing
Anna Zganiacz, Michael Santosuosso, Jun Wang, Tony Yang, Lihao Chen, Maria Anzulovic, Scott Alexander, Brigitte Gicquel, Yonghong Wan, Jonathan Bramson, Mark Inman, Zhou Xing
View: Text | PDF

TNF-α is a critical negative regulator of type 1 immune activation during intracellular bacterial infection

  • Text
  • PDF
Abstract

TNF-α has long been regarded as a proimmune cytokine involved in antimicrobial type 1 immunity. However, the precise role of TNF-α in antimicrobial type 1 immunity remains poorly understood. We found that TNF-α–deficient (TNF–/–) mice quickly succumbed to respiratory failure following lung infection with replication-competent mycobacteria, because of apoptosis and necrosis of granuloma and lung structure. Tissue destruction was a result of an uncontrolled type 1 immune syndrome characterized by expansion of activated CD4 and CD8 T cells, increased frequency of antigen-specific T cells, and overproduction of IFN-γ and IL-12. Depletion of CD4 and CD8 T cells decreased IFN-γ levels, prevented granuloma and tissue necrosis, and prolonged the survival of TNF–/– hosts. Early reconstitution of TNF-α by gene transfer reduced the frequency of antigen-specific T cells and improved survival. TNF-α controlled type 1 immune activation at least in part by suppressing T cell proliferation, and this suppression involved both TNF receptor p55 and TNF receptor p75. Heightened type 1 immune activation also occurred in TNF–/– mice treated with dead mycobacteria, live replication-deficient mycobacteria, or mycobacterial cell wall components. Our study thus identifies TNF-α as a type 1 immunoregulatory cytokine whose primary role, different from those of other type 1 cytokines, is to keep an otherwise detrimental type 1 immune response in check.

Authors

Anna Zganiacz, Michael Santosuosso, Jun Wang, Tony Yang, Lihao Chen, Maria Anzulovic, Scott Alexander, Brigitte Gicquel, Yonghong Wan, Jonathan Bramson, Mark Inman, Zhou Xing

×
  • ← Previous
  • 1
  • 2
  • …
  • 33
  • 34
  • 35
  • 36
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts