Activation of mTOR-dependent pathways regulates the specification and differentiation of CD4+ T effector cell subsets. Herein, we show that mTOR complex 1 (mTORC1) and mTORC2 have distinct roles in the generation of CD8+ T cell effector and memory populations. Evaluation of mice with a T cell–specific deletion of the gene encoding the negative regulator of mTORC1, tuberous sclerosis complex 2 (TSC2), resulted in the generation of highly glycolytic and potent effector CD8+ T cells; however, due to constitutive mTORC1 activation, these cells retained a terminally differentiated effector phenotype and were incapable of transitioning into a memory state. In contrast, CD8+ T cells deficient in mTORC1 activity due to loss of RAS homolog enriched in brain (RHEB) failed to differentiate into effector cells but retained memory characteristics, such as surface marker expression, a lower metabolic rate, and increased longevity. However, these RHEB-deficient memory-like T cells failed to generate recall responses as the result of metabolic defects. While mTORC1 influenced CD8+ T cell effector responses, mTORC2 activity regulated CD8+ T cell memory. mTORC2 inhibition resulted in metabolic reprogramming, which enhanced the generation of CD8+ memory cells. Overall, these results define specific roles for mTORC1 and mTORC2 that link metabolism and CD8+ T cell effector and memory generation and suggest that these functions have the potential to be targeted for enhancing vaccine efficacy and antitumor immunity.
Kristen N. Pollizzi, Chirag H. Patel, Im-Hong Sun, Min-Hee Oh, Adam T. Waickman, Jiayu Wen, Greg M. Delgoffe, Jonathan D. Powell
DCs are able to undergo rapid maturation, which subsequently allows them to initiate and orchestrate T cell–driven immune responses. DC maturation must be tightly controlled in order to avoid random T cell activation and development of autoimmunity. Here, we determined that 12/15-lipoxygenase–meditated (12/15-LO–mediated) enzymatic lipid oxidation regulates DC activation and fine-tunes consecutive T cell responses. Specifically, 12/15-LO activity determined the DC activation threshold via generation of phospholipid oxidation products that induced an antioxidative response dependent on the transcription factor NRF2. Deletion of the 12/15-LO–encoding gene or pharmacologic inhibition of 12/15-LO in murine or human DCs accelerated maturation and shifted the cytokine profile, thereby favoring the differentiation of Th17 cells. Exposure of 12/15-LO–deficient DCs to 12/15-LO–derived oxidized phospholipids attenuated both DC activation and the development of Th17 cells. Analysis of lymphatic tissues from 12/15-LO–deficient mice confirmed enhanced maturation of DCs as well as an increased differentiation of Th17 cells. Moreover, experimental autoimmune encephalomyelitis in mice lacking 12/15-LO resulted in an exacerbated Th17-driven autoimmune disease. Together, our data reveal that 12/15-LO controls maturation of DCs and implicate enzymatic lipid oxidation in shaping the adaptive immune response.
Tobias Rothe, Florian Gruber, Stefan Uderhardt, Natacha Ipseiz, Susanne Rössner, Olga Oskolkova, Stephan Blüml, Norbert Leitinger, Wolfgang Bicker, Valery N. Bochkov, Masayuki Yamamoto, Alexander Steinkasserer, Georg Schett, Elisabeth Zinser, Gerhard Krönke
Toidi Adekambi, Chris C. Ibegbu, Stephanie Cagle, Ameeta S. Kalokhe, Yun F. Wang, Yijuan Hu, Cheryl L. Day, Susan M. Ray, Jyothi Rengarajan
Metabolic reprogramming is implicated in macrophage activation, but the underlying mechanisms are poorly understood. Here, we demonstrate that the NOTCH1 pathway dictates activation of M1 phenotypes in isolated mouse hepatic macrophages (HMacs) and in a murine macrophage cell line by coupling transcriptional upregulation of M1 genes with metabolic upregulation of mitochondrial oxidative phosphorylation and ROS (mtROS) to augment induction of M1 genes. Enhanced mitochondrial glucose oxidation was achieved by increased recruitment of the NOTCH1 intracellular domain (NICD1) to nuclear and mitochondrial genes that encode respiratory chain components and by NOTCH-dependent induction of pyruvate dehydrogenase phosphatase 1 (
Jun Xu, Feng Chi, Tongsheng Guo, Vasu Punj, W.N. Paul Lee, Samuel W. French, Hidekazu Tsukamoto
Mammalian pregnancy requires protection against immunological rejection of the developing fetus bearing discordant paternal antigens. Immune evasion in this developmental context entails silenced expression of chemoattractant proteins (chemokines), thereby preventing harmful immune cells from penetrating the maternal-fetal interface. Here, we demonstrate that fetal wastage triggered by prenatal
Vandana Chaturvedi, James M. Ertelt, Tony T. Jiang, Jeremy M. Kinder, Lijun Xin, Kathryn J. Owens, Helen N. Jones, Sing Sing Way
Obesity and type 2 diabetes (T2D) are associated with low-grade inflammation, activation of immune cells, and alterations of the gut microbiota. Mucosal-associated invariant T (MAIT) cells, which are innate-like T cells that recognize bacterial ligands, are present in blood and enriched in mucosal and inflamed tissues. Here, we analyzed MAIT cells in the blood and adipose tissues of patients with T2D and/or severe obesity. We determined that circulating MAIT cell frequency was dramatically decreased in both patient groups, and this population was even undetectable in some obese patients. Moreover, in both patient groups, circulating MAIT cells displayed an activated phenotype that was associated with elevated Th1 and Th17 cytokine production. In obese patients, MAIT cells were more abundant in adipose tissue than in the blood and exhibited a striking IL-17 profile. Bariatric surgery in obese patients not only improved their metabolic parameters but also increased circulating MAIT cell frequency at 3 months after surgery. Similarly, cytokine production by blood MAIT cells was strongly decreased after surgery. This study reveals profound MAIT cell abnormalities in patients harboring metabolic disorders, suggesting their potential role in these pathologies.
Isabelle Magalhaes, Karine Pingris, Christine Poitou, Stéphanie Bessoles, Nicolas Venteclef, Badr Kiaf, Lucie Beaudoin, Jennifer Da Silva, Omran Allatif, Jamie Rossjohn, Lars Kjer-Nielsen, James McCluskey, Séverine Ledoux, Laurent Genser, Adriana Torcivia, Claire Soudais, Olivier Lantz, Christian Boitard, Judith Aron-Wisnewsky, Etienne Larger, Karine Clément, Agnès Lehuen
Cherubism is a rare autoinflammatory bone disorder that is associated with point mutations in the SH3-domain binding protein 2 (
Virginie Prod’Homme, Laurent Boyer, Nicholas Dubois, Aude Mallavialle, Patrick Munro, Xavier Mouska, Isabelle Coste, Robert Rottapel, Sophie Tartare-Deckert, Marcel Deckert
Leishmaniasis is a major tropical disease that can present with cutaneous, mucocutaneous, or visceral manifestation and affects millions of individuals, causing substantial morbidity and mortality in third-world countries. The development of a Th1-adaptive immune response is associated with resistance to developing
Prajwal Gurung, Rajendra Karki, Peter Vogel, Makiko Watanabe, Mark Bix, Mohamed Lamkanfi, Thirumala-Devi Kanneganti
The emergence and seasonal persistence of pathogenic H7N9 influenza viruses in China have raised concerns about the pandemic potential of this strain, which, if realized, would have a substantial effect on global health and economies. H7N9 viruses are able to bind to human sialic acid receptors and are also able to develop resistance to neuraminidase inhibitors without a loss in fitness. It is not clear whether prior exposure to circulating human influenza viruses or influenza vaccination confers immunity to H7N9 strains. Here, we demonstrate that 3 of 83 H3 HA-reactive monoclonal antibodies generated by individuals that had previously undergone influenza A virus vaccination were able to neutralize H7N9 viruses and protect mice against homologous challenge. The H7N9-neutralizing antibodies bound to the HA stalk domain but exhibited a difference in their breadth of reactivity to different H7 influenza subtypes. Mapping viral escape mutations suggested that these antibodies bind at least two different epitopes on the stalk region. Together, these results indicate that these broadly neutralizing antibodies may contribute to the development of therapies against H7N9 strains and may also be effective against pathogenic H7 strains that emerge in the future.
Carole J. Henry Dunand, Paul E. Leon, Kaval Kaur, Gene S. Tan, Nai-Ying Zheng, Sarah Andrews, Min Huang, Xinyan Qu, Yunping Huang, Marlene Salgado-Ferrer, Irvin Y. Ho, William Taylor, Rong Hai, Jens Wrammert, Rafi Ahmed, Adolfo García-Sastre, Peter Palese, Florian Krammer, Patrick C. Wilson
Accumulation of IL-17–producing Th17 cells is associated with the development of multiple autoimmune diseases; however, the contribution of microRNA (miRNA) pathways to the intrinsic control of Th17 development remains unclear. Here, we demonstrated that miR-21 expression is elevated in Th17 cells and that mice lacking miR-21 have a defect in Th17 differentiation and are resistant to experimental autoimmune encephalomyelitis (EAE). Furthermore, we determined that miR-21 promotes Th17 differentiation by targeting and depleting SMAD-7, a negative regulator of TGF-β signaling. Moreover, the decreases in Th17 differentiation in miR-21–deficient T cells were associated with defects in SMAD-2/3 activation and IL-2 suppression. Finally, we found that treatment of WT mice with an anti–miR-21 oligonucleotide reduced the clinical severity of EAE, which was associated with a decrease in Th17 cells. Thus, we have characterized a T cell–intrinsic miRNA pathway that enhances TGF-β signaling, limits the autocrine inhibitory effects of IL-2, and thereby promotes Th17 differentiation and autoimmunity.
Gopal Murugaiyan, Andre Pires da Cunha, Amrendra K. Ajay, Nicole Joller, Lucien P. Garo, Sowmiya Kumaradevan, Nir Yosef, Vishal S. Vaidya, Howard L. Weiner