Cancer is associated with immune deficiency, but the biologic basis of this is poorly defined. Here we demonstrate that impaired actin polymerization results in CD4+ and CD8+ T cells from patients with chronic lymphocytic leukemia (CLL) exhibiting defective immunological synapse formation with APCs. Although this synapse dysfunction was in part a result of the CLL cells having poor APC function, defective actin polymerization was also identified in T cells from patients with CLL. We further demonstrate that, following contact with CLL cells, defects in immune synapse formation were induced in healthy allogeneic T cells. This required direct contact and was inhibited by blocking adhesion molecules on CLL B cells. In T cells from patients with CLL and in T cells from healthy individuals that had been in contact with CLL cells, recruitment of key regulatory proteins to the immune synapse was inhibited. Treatment of autologous T cells and CLL cells with the immunomodulating drug lenalidomide resulted in improved synapse formation. These results define what we believe to be a novel immune dysfunction in T cells from patients with CLL that has implications for both autologous and allogeneic immunotherapy approaches and identifies repair of immune synapse defects as an essential step in improving cancer immunotherapy approaches.
Alan G. Ramsay, Amy J. Johnson, Abigail M. Lee, Güllü Gorgün, Rifca Le Dieu, William Blum, John C. Byrd, John G. Gribben
CD36 is a scavenger receptor that binds multiple ligands, including phosphatidyl serine (PS). Although CD36– mice do not have a bleeding diathesis, we show here that they do have significantly prolonged thrombotic occlusion times in response to FeCl3-induced vascular injury. Because cell-derived microparticles (MPs) are generated in response to vascular injury and circulate in patients with prothrombotic diseases, we hypothesized that PS exposed on their surfaces could be an endogenous CD36 ligand that transmits an activating signal to platelets. We found that MPs prepared from human ECs, monocytes, or platelets or isolated from blood of normal subjects bound to platelets. Binding was not observed with platelets from CD36– donors and was inhibited by an anti-CD36 antibody or by blockade of exposed PS by annexin V or anti-PS IgM. Preincubation of platelets with MPs led to CD36-dependent augmentation of platelet activation in response to low doses of ADP, as assessed by measuring α2bβ3 activation, P-selectin expression, and aggregation. Immunofluorescence confocal microscopy of murine carotid thrombi from CD36– mice showed a significant decrement in endothelial antigen accumulation, which suggests that CD36 plays a role in MP recruitment into thrombi. These results provide what we believe to be a novel role for CD36 in thrombosis.
Arunima Ghosh, Wei Li, Maria Febbraio, Ricardo G. Espinola, Keith R. McCrae, Erin Cockrell, Roy L. Silverstein
Intravenous infusion of recombinant human activated Factor VII (FVIIa) has been used for over a decade in the successful management of bleeding episodes in patients with inhibitory antibodies to Factor VIII or Factor IX. Previously, we showed that expression of murine FVIIa (mFVIIa) from an adeno-associated viral (AAV) vector corrected abnormal hemostatic parameters in hemophilia B mice. To pursue this as a therapeutic approach, we sought to define safe and effective levels of FVIIa for continuous expression. In mice transgenic for mFVIIa or injected with AAV-mFVIIa, we analyzed survival, expression levels, in vitro and in vivo coagulation tests, and histopathology for up to 16 months after birth/mFVIIa expression. We found that continuous expression of mFVIIa at levels at or below 1.5 μg/ml was safe, effective, and compatible with a normal lifespan. However, expression levels of 2 μg/ml or higher were associated with thrombosis and early mortality, with pathologic findings in the heart and lungs that were rescued in a low–factor X (low-FX) mouse background, suggesting a FX-mediated effect. The findings from these mouse models of continuous FVIIa expression have implications for the development of a safe gene transfer approach for hemophilia and are consistent with the possibility of thromboembolic risk of continuously elevated FVIIa levels.
Majed N. Aljamali, Paris Margaritis, Alexander Schlachterman, Shing Jen Tai, Elise Roy, Ralph Bunte, Rodney M. Camire, Katherine A. High
Platelet adhesion to vascular subendothelium, mediated in part by interactions between collagen and glycoprotein VI (GPVI) complexed with Fc receptor γ-chain, is crucial for thrombus formation. Antiplatelet therapy benefits patients with various thrombotic and ischemic diseases, but the safety and efficacy of existing treatments are limited. Recent data suggest GPVI as a promising target for a novel antiplatelet therapy, for example, GPVI-specific Abs that deplete GPVI from the surface of platelets. Here, we characterized GPVI-specific auto-Abs (YA-Abs) from the first reported patient with ongoing platelet GPVI deficiency caused by the YA-Abs. To obtain experimentally useful human GPVI–specific mAbs with characteristics similar to YA-Abs, we generated human GPVI–specific mouse mAbs and selected 2 representative mAbs, mF1201 and mF1232, whose binding to GPVI was inhibited by YA-Abs. In vitro, mF1201, but not mF1232, induced human platelet activation and GPVI shedding, and mF1232 inhibited collagen-induced human platelet aggregation. Administration of mF1201 and mF1232 to monkeys caused GPVI immunodepletion with and without both significant thrombocytopenia and GPVI shedding, respectively. When a human/mouse chimeric form of mF1232 (cF1232) was labeled with a fluorescent endocytosis probe and administered to monkeys, fluorescence increased in circulating platelets and surface GPVI was lost. Loss of platelet surface GPVI mediated by cF1232 was successfully reproduced in vitro in the presence of a cAMP-elevating agent. Thus, we have characterized cAMP-dependent endocytosis of GPVI mediated by a human GPVI–specific mAb as what we believe to be a novel antiplatelet therapy.
Hiroshi Takayama, Yoshitaka Hosaka, Kazuyuki Nakayama, Kamon Shirakawa, Katsuki Naitoh, Tomokazu Matsusue, Mikihiko Shinozaki, Motoyasu Honda, Yukiko Yatagai, Tetsushi Kawahara, Jiro Hirose, Tooru Yokoyama, Michiru Kurihara, Shoji Furusako
Deficiencies in the SBDS gene result in Shwachman-Diamond syndrome (SDS), an inherited bone marrow failure syndrome associated with leukemia predisposition. SBDS encodes a highly conserved protein previously implicated in ribosome biogenesis. Using human primary bone marrow stromal cells (BMSCs), lymphoblasts, and skin fibroblasts, we show that SBDS stabilized the mitotic spindle to prevent genomic instability. SBDS colocalized with the mitotic spindle in control primary BMSCs, lymphoblasts, and skin fibroblasts and bound to purified microtubules. Recombinant SBDS protein stabilized microtubules in vitro. We observed that primary BMSCs and lymphoblasts from SDS patients exhibited an increased incidence of abnormal mitoses. Similarly, depletion of SBDS by siRNA in human skin fibroblasts resulted in increased mitotic abnormalities and aneuploidy that accumulated over time. Treatment of primary BMSCs and lymphoblasts from SDS patients with nocodazole, a microtubule destabilizing agent, led to increased mitotic arrest and apoptosis, consistent with spindle destabilization. Conversely, SDS patient cells were resistant to taxol, a microtubule stabilizing agent. These findings suggest that spindle instability in SDS contributes to bone marrow failure and leukemogenesis.
Karyn M. Austin, Mohan L. Gupta Jr., Scott A. Coats, Asmin Tulpule, Gustavo Mostoslavsky, Alejandro B. Balazs, Richard C. Mulligan, George Daley, David Pellman, Akiko Shimamura
The essential contribution of the antidepressant-sensitive serotonin (5-HT) transporter SERT (which is encoded by the SLC6A4 gene) to platelet 5-HT stores suggests an important role of this transporter in platelet function. Here, using SERT-deficient mice, we have established a role for constitutive SERT expression in efficient ADP- and thrombin-triggered platelet aggregation. Additionally, using pharmacological blockers of SERT and the vesicular monoamine transporter (VMAT), we have identified a role for ongoing 5-HT release and SERT activity in efficient human platelet aggregation. We have also demonstrated that fibrinogen, an activator of integrin αIIbβ3, enhances SERT activity in human platelets and that integrin αIIbβ3 interacts directly with the C terminus of SERT. Consistent with these findings, knockout mice lacking integrin β3 displayed diminished platelet SERT activity. Conversely, HEK293 cells engineered to express human SERT and an activated form of integrin β3 exhibited enhanced SERT function that coincided with elevated SERT surface expression. Our results support an unsuspected role of αIIbβ3/SERT associations as well as αIIbβ3 activation in control of SERT activity in vivo that may have broad implications for hyperserotonemia, cardiovascular disorders, and autism.
Ana Marin D. Carneiro, Edwin H. Cook, Dennis L. Murphy, Randy D. Blakely
Transplantation of healthy cells to repair organ damage or replace deficient functions constitutes a major goal of cell therapy. However, the mechanisms by which transplanted cells engraft, proliferate, and function remain unknown. To investigate whether host liver sinusoidal endothelium could be replaced with transplanted liver sinusoidal endothelial cells, we developed an animal model of tissue replacement that utilized a genetic system to identify transplanted cells and induced host-cell perturbations to confer a proliferative advantage to transplanted cells. Under these experimental conditions, transplanted cells engrafted efficiently and proliferated to replace substantial portions of the liver endothelium. Tissue studies demonstrated that transplanted cells became integral to the liver structure and reacquired characteristic endothelial morphology. Characterization of transplanted endothelial cells by membrane markers and studies of cellular function, including synthesis and release of coagulation factor VIII, demonstrated that transplanted cells were functionally intact. Further analysis showed that repopulation of the livers of mice that model hemophilia A with healthy endothelial cells restored plasma factor VIII activity and corrected their bleeding phenotype. Our studies therefore suggest that transplantation of healthy endothelial cells should be considered for cell therapy of relevant disorders and that endothelial reconstitution with transplanted cells may offer an excellent paradigm for defining organ-specific pathophysiological mechanisms.
Antonia Follenzi, Daniel Benten, Phyllis Novikoff, Louisa Faulkner, Sanj Raut, Sanjeev Gupta
Myeloproliferative disorders (MPDs) are characterized by cytokine hypersensitivity and apoptosis resistance. Development of a block in myeloid differentiation is associated with progression of MPD to acute myeloid leukemia (AML) and portends poor prognosis. Identifying molecular markers of this transition may suggest targets for therapeutic intervention. Interferon consensus sequence binding protein (ICSBP, also known as IRF8) is an interferon-regulatory transcription factor that functions as a leukemia tumor suppressor. In mice, ICSBP deficiency induces an MPD that progresses to AML over time, suggesting that ICSBP deficiency is sufficient for myeloproliferation, but additional genetic lesions are necessary for AML. Since activity of ICSBP is influenced by tyrosine phosphorylation state, we hypothesized that mutations in molecular pathways that regulate this process might synergize with ICSBP deficiency for progression to AML. Consistent with this, we found that constitutive activation of SHP2 protein tyrosine phosphatase synergized with ICSBP haploinsufficiency to facilitate cytokine-induced myeloproliferation, apoptosis resistance, and rapid progression to AML in a murine bone marrow transplantation model. Constitutive SHP2 activation cooperated with ICSBP deficiency to increase the number of progenitors in the bone marrow and myeloid blasts in circulation, indicating a block in differentiation. Since SHP2 activation and ICSBP deficiency may coexist in human myeloid malignancies, our studies have identified a molecular mechanism potentially involved in disease progression in such diseases.
Iwona Konieczna, Elizabeth Horvath, Hao Wang, Stephan Lindsey, Gurveen Saberwal, Ling Bei, Weiqi Huang, Leonidas Platanias, Elizabeth A. Eklund
The proliferation and differentiation of hematopoietic stem cells (HSCs) is finely regulated by extrinsic and intrinsic factors via various signaling pathways. Here we have shown that, similar to mice deficient in the lipid phosphatase SHIP, loss of 2 Src family kinases, Lyn and Hck, profoundly affects HSC differentiation, producing hematopoietic progenitors with increased proliferation, reduced apoptosis, growth factor–independent survival, and skewed differentiation toward M2 macrophages. This phenotype culminates in a Stat5-dependent myeloproliferative disease that is accompanied by M2 macrophage infiltration of the lung. Expression of a membrane-bound form of SHIP in HSCs lacking both Lyn and Hck restored normal hematopoiesis and prevented myeloproliferation. In vitro and in vivo studies suggested the involvement of autocrine and/or paracrine production of IL-3 and GM-CSF in the increased proliferation and myeloid differentiation of HSCs. Thus, this study has defined a myeloproliferative transformation-sensitive signaling pathway, composed of Lyn/Hck, SHIP, autocrine/paracrine cytokines, and Stat5, that regulates HSC differentiation and M2 macrophage programming.
Wenbin Xiao, Hong Hong, Yuko Kawakami, Clifford A. Lowell, Toshiaki Kawakami
Many patients with anemia fail to respond to treatment with erythropoietin (Epo), a commonly used hormone that stimulates erythroid progenitor production and maturation by human BM or by murine spleen. The protein product of growth arrest–specific gene 6 (Gas6) is important for cell survival across several cell types, but its precise physiological role remains largely enigmatic. Here, we report that murine erythroblasts released Gas6 in response to Epo and that Gas6 enhanced Epo receptor signaling by activating the serine-threonine kinase Akt in these cells. In the absence of Gas6, erythroid progenitors and erythroblasts were hyporesponsive to the survival activity of Epo and failed to restore hematocrit levels in response to anemia. In addition, Gas6 may influence erythropoiesis via paracrine erythroblast-independent mechanisms involving macrophages. When mice with acute anemia were treated with Gas6, the protein normalized hematocrit levels without causing undesired erythrocytosis. In a transgenic mouse model of chronic anemia caused by insufficient Epo production, Gas6 synergized with Epo in restoring hematocrit levels. These findings may have implications for the treatment of patients with anemia who fail to adequately respond to Epo.
Anne Angelillo-Scherrer, Laurent Burnier, Diether Lambrechts, Richard J. Fish, Marc Tjwa, Stéphane Plaisance, Rocco Sugamele, Maria DeMol, Eduardo Martinez-Soria, Patrick H. Maxwell, Greg Lemke, Stephen P. Goff, Glenn K. Matsushima, H. Shelton Earp, Marc Chanson, Désiré Collen, Shozo Izui, Marc Schapira, Edward M. Conway, Peter Carmeliet