Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Concise Communications

  • 148 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • …
  • 14
  • 15
  • Next →
Turbinmicin inhibits Candida biofilm growth by disrupting fungal vesicle-mediated trafficking
Miao Zhao, … , Tim S. Bugni, David R. Andes
Miao Zhao, … , Tim S. Bugni, David R. Andes
Published December 29, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI145123.
View: Text | PDF

Turbinmicin inhibits Candida biofilm growth by disrupting fungal vesicle-mediated trafficking

  • Text
  • PDF
Abstract

The emergence of drug-resistant fungi has prompted an urgent threat alert from the Centers for Disease Control. Biofilm assembly by these pathogens further impairs effective therapy. We recently identifed an antifungal, turbinmicin, that inhibits the fungal vesicle-mediated trafficking pathway and demonstrates broad-spectrum activity against planktonically growing fungi. During biofilm growth, vesicles with unique features play a critical role in the delivery of the biofilm extracellular matrix components. As these components are largely responsible for the drug resistance associated with biofilm growth, we explored the utility of turbinmicin in the biofilm setting. We found that turbinmicin disrupts extracellular vesicle delivery during biofilm growth, and this impairs the subsequent assembly of the biofilm matrix. We demonstrated that elimination of the extracellular matrix renders the drug-resistant biofilm communities susceptible to fungal killing by turbinmicin. Furthermore, the addition of turbinmicin to otherwise ineffective antifungal therapy potentiated the activity of these drugs. The underlying role of vesicles explains this dramatic activity and was supported by phenotype reversal with the addition of exogenous biofilm extracellular vesicles. This striking capacity to cripple biofilm assembly mechanisms reveals a new approach to eradicating biofilms and sheds light on turbinmicin as a promising anti-biofilm drug.

Authors

Miao Zhao, Fan Zhang, Robert Zarnowski, Kenneth J. Barns, Ryley Jones, Jen L. Fossen, Hiram Sanchez, Scott R. Rajski, Anjon Audhya, Tim S. Bugni, David R. Andes

×

Propranolol inhibits cavernous vascular malformations by β1 adrenergic receptor antagonism in animal models
Wenqing Li, … , Douglas A. Marchuk, Issam A. Awad
Wenqing Li, … , Douglas A. Marchuk, Issam A. Awad
Published December 10, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI144893.
View: Text | PDF | Corrigendum

Propranolol inhibits cavernous vascular malformations by β1 adrenergic receptor antagonism in animal models

  • Text
  • PDF
Abstract

Propranolol, a pleiotropic β-adrenergic blocker, was anecdotally reported to reduce cerebral cavernous malformations (CCM) in humans. However, propranolol has neither been rigorously evaluated in animal models nor was its mechanism of action in CCM defined. We report that propranolol or its S(-) enantiomer dramatically reduced embryonic venous cavernomas in ccm2 mosaic zebrafish, whereas R-(+)-propranolol, lacking β-antagonism, had no effect. Silencing of β1, but not β2, adrenergic receptor mimicked the beneficial effects of propranolol in a zebrafish CCM model as did a β1-selective antagonist, metoprolol. Thus, propranolol ameliorates cavernous malformations by β1 adrenergic antagonism in zebrafish. Oral propranolol significantly reduced lesion burden in two chronic murine models of the exceptionally aggressive Pdcd10/Ccm3 form of CCM. Propranolol or other β1-selective antagonists may be beneficial in CCM disease.

Authors

Wenqing Li, Robert Shenkar, Matthew R. Detter, Thomas Moore, Christian R. Benavides, Rhonda Lightle, Romuald Girard, Nicholas Hobson, Ying Cao, Yan Li, Erin Griffin, Carol Gallione, Joseph M. Zabramski, Mark H. Ginsberg, Douglas A. Marchuk, Issam A. Awad

×

Age-determined expression of priming protease TMPRSS2 and localization of SARS-CoV-2 in lung epithelium
Bryce A. Schuler, … , Jonathan A. Kropski, Jennifer M. S. Sucre
Bryce A. Schuler, … , Jonathan A. Kropski, Jennifer M. S. Sucre
Published November 12, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI140766.
View: Text | PDF

Age-determined expression of priming protease TMPRSS2 and localization of SARS-CoV-2 in lung epithelium

  • Text
  • PDF
Abstract

The SARS-CoV-2 novel coronavirus global pandemic (COVID-19) has led to millions of cases and hundreds of thousands of deaths globally. While older adults appear at high risk for severe disease, hospitalizations and deaths due to SARS-CoV-2 among children have been relatively rare. Integrating single-cell RNA sequencing (scRNA-seq) of developing mouse lung with temporally-resolved immunofluorescence in mouse and human lung tissue, we found expression of SARS-CoV-2 Spike protein primer TMPRSS2 was highest in ciliated cells and type I alveolar epithelial cells (AT1), and TMPRSS2 expression increased with aging in mice and humans. Analysis of autopsy tissue from fatal COVID-19 cases detected SARS-CoV-2 RNA most frequently in ciliated and secretory cells in airway epithelium and AT1 cells in peripheral lung. SARS-CoV-2 RNA was highly colocalized in cells expressing TMPRSS2. Together, these data demonstrate the cellular spectrum infected by SARS-CoV-2 in lung epithelium and suggest that developmental regulation of TMPRSS2 may underlie the relative protection of infants and children from severe respiratory illness.

Authors

Bryce A. Schuler, A. Christian Habermann, Erin J. Plosa, Chase J. Taylor, Christopher Jetter, Nicholas M. Negretti, Meghan E. Kapp, John T. Benjamin, Peter Gulleman, David S. Nichols, Lior Z. Braunstein, Alice Hackett, Michael Koval, Susan H. Guttentag, Timothy S. Blackwell, Steven A. Webber, Nicholas E. Banovich, Jonathan A. Kropski, Jennifer M. S. Sucre

×

Hyperglycemia cooperates with Tet2 heterozygosity to induce leukemia driven by pro-inflammatory cytokine induced lncRNA Morrbid
Zhigang Cai, … , Laura S. Haneline, Reuben Kapur
Zhigang Cai, … , Laura S. Haneline, Reuben Kapur
Published October 22, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI140707.
View: Text | PDF

Hyperglycemia cooperates with Tet2 heterozygosity to induce leukemia driven by pro-inflammatory cytokine induced lncRNA Morrbid

  • Text
  • PDF
Abstract

Diabetes mellitus (DM) is a risk factor for cancer development. However, the role of DM induced hyperglycemic stress (HG) in the development of blood cancer is poorly understood, largely due to lack of appropriate animal models. Epidemiologic studies show that individuals with DM are more likely to possess higher rate of mutations in genes found in pre-leukemic stem and progenitor cells (pre-LHSC/Ps) including in the epigenetic regulator TET2. TET2-mutant pre-LHSC/Ps require additional hits to evolve into a full-blown leukemia and/or aggressive myeloproliferative neoplasm (MPN). Cell intrinsic mutations have been shown to cooperate with Tet2 to promote leukemic transformation. However, the role of extrinsic factors is poorly understood. Utilizing a novel mouse model bearing haploinsufficiency of Tet2, to mimic the human pre-LHSC/P condition and HG stress, in the form of an Ins2Akita/+ mutation, which induces HG and Type-1 DM, we show that the compound mutant mice develop a lethal form of MPN and/or acute myeloid leukemia (AML). RNAseq revealed that this is in part due to upregulation of pro-inflammatory pathways, thereby generating a feedforward loop, including the expression of an anti-apoptotic lncRNA Morrbid. Loss of Morrbid in the compound mutants rescues the lethality and mitigates the development of MPN/AML. Our results describe a novel mouse model for age-dependent AML/MPN and suggest that HG stress acts as an environmental driver for myeloid neoplasm, which could be effectively prevented by reducing the expression of inflammation-related lncRNA Morrbid.

Authors

Zhigang Cai, Xiaoyu Lu, Chi Zhang, Sai Nelanuthala, Fabiola Aguilera, Abigail Hadley, Baskar Ramdas, Fang Fang, Kenneth P. Nephew, Jonathan J. Kotzin, Adam Williams, Jorge Henao-Mejia, Laura S. Haneline, Reuben Kapur

×

SARS-CoV-2 specific antibody rearrangements in pre-pandemic immune repertoires of risk cohorts and COVID-19 patients
Lisa Paschold, … , Christoph Schultheiß, Mascha Binder
Lisa Paschold, … , Christoph Schultheiß, Mascha Binder
Published October 16, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI142966.
View: Text | PDF

SARS-CoV-2 specific antibody rearrangements in pre-pandemic immune repertoires of risk cohorts and COVID-19 patients

  • Text
  • PDF
Abstract

A considerable fraction of B cells recognize SARS-CoV-2 with germline-encoded elements of their B cell receptor resulting in the production of neutralizing and non-neutralizing antibodies. We found that antibody sequences from different discovery cohorts shared biochemical properties and could be retrieved across validation cohorts confirming the stereotyped character of this naive response in COVID-19. While neutralizing antibody sequences were found independently of disease severity in line with serological data, individual non-neutralizing antibody sequences were associated with fatal clinical courses suggesting detrimental effects of these antibodies. We mined 200 immune repertoires of healthy individuals and 500 of patients with blood or solid cancers - all acquired prior to the pandemic - for SARS-CoV-2 antibody sequences. While the largely unmutated B cell rearrangements occurred in a substantial fraction of immune repertoires from young and healthy individuals, these sequences were less likely found in individuals over 60 years of age and in cancer. This reflects B cell repertoire restriction in aging and cancer and may to a certain extent explain the different clinical COVID-19 courses observed in these risk groups. Future studies will have to address if this stereotyped B cell response to SARS-CoV-2 emerging from unmutated antibody rearrangements will create long-lived memory.

Authors

Lisa Paschold, Donjete Simnica, Edith Willscher, Maria J.G.T. Vehreschild, Jochen Dutzmann, Daniel G. Sedding, Christoph Schultheiß, Mascha Binder

×

Recent endemic coronavirus infection is associated with less severe COVID-19
Manish Sagar, … , Laura White, Joseph P. Mizgerd
Manish Sagar, … , Laura White, Joseph P. Mizgerd
Published September 30, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI143380.
View: Text | PDF

Recent endemic coronavirus infection is associated with less severe COVID-19

  • Text
  • PDF
Abstract

Four different endemic coronaviruses (eCoVs) are etiologic agents for the seasonal “common cold,” and these eCoVs share extensive sequence homology with human severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Here, we show that individuals with as compared to without a relatively recent documented eCoV were tested at greater frequency for respiratory infections but had similar rate of SARS-CoV-2 acquisition. Importantly, the patients with a previously detected eCoV had less severe coronavirus disease-2019 (COVID-19) illness. Our observations suggest that pre-existing immune responses against endemic human coronaviruses can mitigate disease manifestations from SARS-CoV-2 infection.

Authors

Manish Sagar, Katherine Reifler, Michael Rossi, Nancy S. Miller, Pranay Sinha, Laura White, Joseph P. Mizgerd

×

Antigen-specific B-cell depletion for precision therapy of mucosal pemphigus vulgaris
Jinmin Lee, … , Michael C. Miloneǂ, Aimee S. Payne
Jinmin Lee, … , Michael C. Miloneǂ, Aimee S. Payne
Published August 20, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI138416.
View: Text | PDF

Antigen-specific B-cell depletion for precision therapy of mucosal pemphigus vulgaris

  • Text
  • PDF
Abstract

Desmoglein 3 chimeric autoantibody receptor T-cells (DSG3-CAART) expressing the pemphigus vulgaris (PV) autoantigen DSG3, fused to CD137-CD3ζ signaling domains, represent a precision cellular immunotherapy approach for antigen-specific B-cell depletion. Here, we present definitive preclinical studies enabling a first-in-human trial of DSG3-CAART for mucosal PV. DSG3-CAART specifically lysed human anti-DSG3 B-cells from PV patients and demonstrated activity consistent with a threshold dose in vivo, resulting in decreased target cell burden, decreased serum and tissue-bound autoantibodies, and increased DSG3-CAART engraftment. In a PV active immune model with physiologic anti-DSG3 IgG levels, DSG3-CAART inhibited antibody responses against pathogenic DSG3 epitopes and autoantibody binding to epithelial tissues, leading to clinical and histologic resolution of blisters. DSG3 autoantibodies stimulate DSG3-CAART IFNγ secretion and homotypic clustering, consistent with an activated phenotype. Toxicology screens using primary human cells and high-throughput membrane proteome arrays did not identify off-target cytotoxic interactions. These preclinical data guided the trial design for DSG3-CAART and may help inform CAART preclinical development for other antibody-mediated diseases.

Authors

Jinmin Lee, Daniel K. Lundgren, Xuming Mao, Silvio Manfredo-Vieira, Selene Nunez-Cruz, Erik F. Williams, Charles-Antoine Assenmacher, Enrico Radaelli, Sangwook Oh, Baomei Wang, Christoph T. Ellebrecht, Joseph A. Fraietta, Michael C. Miloneǂ, Aimee S. Payne

×

Metabolic effects of air pollution exposure and reversibility
Sanjay Rajagopalan, … , Kasper D. Hansen, Shyam Biswal
Sanjay Rajagopalan, … , Kasper D. Hansen, Shyam Biswal
Published August 11, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI137315.
View: Text | PDF

Metabolic effects of air pollution exposure and reversibility

  • Text
  • PDF
Abstract

Particulate matter < 2.5 micrometers (PM2.5) air pollution is the world’s leading environmental risk factor contributing to mortality through cardiometabolic pathways. In this study, we modeled early life exposure using chow-fed C57BL/6J male mice, exposed to real-world inhaled concentrated PM2.5 (~10 times ambient levels / ~60-120ug/m3) or filtered air over 14 weeks. We investigated PM2.5 effects on phenotype, transcriptome and chromatin accessibility, compared the effects with a prototypical high-fat diet (HFD) stimulus, and examined cessation of exposure on reversibility of phenotype. Exposure to PM2.5 impaired glucose and insulin tolerance, reduced energy expenditure and 18FDG-PET uptake in brown adipose tissue. Multiple differentially expressed gene (DEG) clusters in pathways involving metabolism and circadian rhythm were noted in insulin responsive tissues. Although the magnitude of transcriptional change seen with PM2.5 was lower than HFD, the degree of alteration in chromatin accessibility after PM2.5 exposure was significant. A novel chromatin remodeler SMARCA5 (SWI/SNF complex) was regulated in response to PM2.5 with cessation of exposure associated with reversal of insulin resistance, restoration of chromatin accessibility/nucleosome positioning near transcription start sites (TSS) and exposure induced changes in the transcriptome including SMARCA5, indicating pliable epigenetic control mechanisms following exposure cessation.

Authors

Sanjay Rajagopalan, Bongsoo Park, Rengasamy Palanivel, Vinesh Vinayachandran, Jeffrey A. Deiuliis, Roopesh Singh Gangwar, Lopa M. Das, Jinhu Yin, Youngshim Choi, Sadeer Al-Kindi, Mukesh K. Jain, Kasper D. Hansen, Shyam Biswal

×

Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis
Panagiotis Skendros, … , John D. Lambris, Konstantinos Ritis
Panagiotis Skendros, … , John D. Lambris, Konstantinos Ritis
Published August 6, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI141374.
View: Text | PDF

Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis

  • Text
  • PDF
Abstract

Emerging data indicate that complement and neutrophils contribute to the maladaptive immune response that fuels hyper-inflammation and thrombotic microangiopathy, thereby increasing COVID-19 mortality. Here, we investigated how complement interacts with the platelet/neutrophil extracellular traps (NETs)/thrombin axis, using COVID-19 specimens, cell-based inhibition studies and NETs/human aortic endothelial cell (HAEC) co-cultures. Increased plasma levels of NETs, tissue factor (TF) activity and sC5b-9 were detected in patients. Neutrophils of patients yielded high TF expression and released NETs carrying active TF. Treatment of control neutrophils with COVID-19 platelet-rich plasma generated TF-bearing NETs that induced thrombotic activity of HAEC. Thrombin or NETosis inhibition or C5aR1 blockade attenuated platelet-mediated NET-driven thrombogenicity. COVID-19 serum induced complement activation in vitro, consistent with high complement activity in clinical samples. Complement C3 inhibition with compstatin Cp40 disrupted TF expression in neutrophils. In conclusion, we provide a mechanistic basis for a pivotal role of complement and NETs in COVID-19 immunothrombosis. This study supports strategies against SARS-CoV-2 that exploit complement or NETosis inhibition.

Authors

Panagiotis Skendros, Alexandros Mitsios, Akrivi Chrysanthopoulou, Dimitrios C. Mastellos, Simeon Metallidis, Petros Rafailidis, Maria Ntinopoulou, Eleni Sertaridou, Victoria Tsironidou, Christina Tsigalou, Maria G. Tektonidou, Theocharis Konstantinidis, Charalampos Papagoras, Ioannis Mitroulis, Georgios Germanidis, John D. Lambris, Konstantinos Ritis

×

Pancreatic ductal adenocarcinoma progression is restrained by stromal matrix
Honglin Jiang, … , Wilko Weichert, Eric A. Collisson
Honglin Jiang, … , Wilko Weichert, Eric A. Collisson
Published August 4, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI136760.
View: Text | PDF

Pancreatic ductal adenocarcinoma progression is restrained by stromal matrix

  • Text
  • PDF
Abstract

Desmoplasia describes the deposition of extensive extracellular matrix and defines primary pancreatic ductal adenocarcinoma (PDA). The acellular component of this stroma has been implicated in PDA pathogenesis and is being targeted therapeutically in clinical trials. By analyzing the stromal content of PDA samples from numerous annotated PDA data sets and correlating stromal content with both anatomic site and clinical outcome, we found PDA metastases in the liver, the primary cause of mortality to have less stroma, have higher tumor cellularity than primary tumors. Experimentally manipulating stromal matrix with an anti– lysyl oxidase like-2 (anti-LOXL2) antibody in syngeneic orthotopic PDA mouse models significantly decreased matrix content, led to lower tissue stiffness, lower contrast retention on computed tomography, and accelerated tumor growth, resulting in diminished overall survival. These studies suggest an important protective role of stroma in PDA and urge caution in clinically deploying stromal depletion strategies.

Authors

Honglin Jiang, Robert J. Torphy, Katja Steiger, Henry Hongo, Alexa J. Ritchie, Mark Kriegsmann, David Horst, Sarah E. Umetsu, Nancy M. Joseph, Kimberly McGregor, Michael J. Pishvaian, Edik M. Blais, Brian Lu, Mingyu Li, Michael Hollingsworth, Connor Stashko, Keith Volmar, Jen Jen Yeh, Valerie M. Weaver, Zhen J. Wang, Margaret A. Tempero, Wilko Weichert, Eric A. Collisson

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • …
  • 14
  • 15
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts