Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

A scanner darkly


The retina is a highly vascularized tissue, but too much or too little vascularization can lead to visual impairment and diseases such as familial exudative vitreoretinopathy or macular degeneration. Christine Weinl and colleagues identified the transcription factor SRF and its cofactors MRTF-A and MRTF-B as critical regulators of vascularization in the postnatal mouse eye. They developed transgenic mice in which expression of SRF could be blocked at different points in development. Weinl and colleagues used a confocal scanning laser opthalmoscope (SLO) and fluorescein angiography, which highlights blood vessels, to examine the retinal vasculature of wild type (top left) and Srf-depleted mice (top middle and top right). The bottom panels of the accompanying image show retinal flat mounts from wild type (bottom left) and Srf-depleted mice (bottom middle, bottom right) stained for ILB4, a marker of the retinal primary plexus, which forms the eye's blood supply. Loss of vascular Srf in adult mice led to the formation of microaneurysms and excess blood vessel formation similar to human retinal diseases such as retinal angiomatous proliferation and macular telangiectasia. These studies demonstrate that SRF plays an integral role in the development and homeostasis or the retinal vasculature and suggest that SRF could potentially serve as a therapeutic target in human retinal diseases.

Published April 8, 2013, by Jillian Hurst

Scientific Show Stopper

Related articles

Endothelial SRF/MRTF ablation causes vascular disease phenotypes in murine retinae
Christine Weinl, Heidemarie Riehle, Dongjeong Park, Christine Stritt, Susanne Beck, Gesine Huber, Hartwig Wolburg, Eric N. Olson, Mathias W. Seeliger, Ralf H. Adams, Alfred Nordheim
Christine Weinl, Heidemarie Riehle, Dongjeong Park, Christine Stritt, Susanne Beck, Gesine Huber, Hartwig Wolburg, Eric N. Olson, Mathias W. Seeliger, Ralf H. Adams, Alfred Nordheim
View: Text | PDF
Research Article Vascular biology

Endothelial SRF/MRTF ablation causes vascular disease phenotypes in murine retinae

  • Text
  • PDF
Abstract

Retinal vessel homeostasis ensures normal ocular functions. Consequently, retinal hypovascularization and neovascularization, causing a lack and an excess of vessels, respectively, are hallmarks of human retinal pathology. We provide evidence that EC-specific genetic ablation of either the transcription factor SRF or its cofactors MRTF-A and MRTF-B, but not the SRF cofactors ELK1 or ELK4, cause retinal hypovascularization in the postnatal mouse eye. Inducible, EC-specific deficiency of SRF or MRTF-A/MRTF-B during postnatal angiogenesis impaired endothelial tip cell filopodia protrusion, resulting in incomplete formation of the retinal primary vascular plexus, absence of the deep plexi, and persistence of hyaloid vessels. All of these features are typical of human hypovascularization-related vitreoretinopathies, such as familial exudative vitreoretinopathies including Norrie disease. In contrast, conditional EC deletion of Srf in adult murine vessels elicited intraretinal neovascularization that was reminiscent of the age-related human pathologies retinal angiomatous proliferation and macular telangiectasia. These results indicate that angiogenic homeostasis is ensured by differential stage-specific functions of SRF target gene products in the developing versus the mature retinal vasculature and suggest that the actin-directed MRTF-SRF signaling axis could serve as a therapeutic target in the treatment of human vascular retinal diseases.

Authors

Christine Weinl, Heidemarie Riehle, Dongjeong Park, Christine Stritt, Susanne Beck, Gesine Huber, Hartwig Wolburg, Eric N. Olson, Mathias W. Seeliger, Ralf H. Adams, Alfred Nordheim

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts