Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Submit a Letter to the Editor

GATA4 loss of function in liver cancer impedes precursor to hepatocyte transition
Francis O. Enane, … , Han Chong Toh, Yogen Saunthararajah
Francis O. Enane, … , Han Chong Toh, Yogen Saunthararajah
Published July 31, 2017
Citation Information: J Clin Invest. 2017;127(9):3527-3542. https://doi.org/10.1172/JCI93488.
View: Text | PDF
Research Article Genetics Oncology

GATA4 loss of function in liver cancer impedes precursor to hepatocyte transition

  • Text
  • PDF
Abstract

The most frequent chromosomal structural loss in hepatocellular carcinoma (HCC) is of the short arm of chromosome 8 (8p). Genes on the remaining homologous chromosome, however, are not recurrently mutated, and the identity of key 8p tumor-suppressor genes (TSG) is unknown. In this work, analysis of minimal commonly deleted 8p segments to identify candidate TSG implicated GATA4, a master transcription factor driver of hepatocyte epithelial lineage fate. In a murine model, liver-conditional deletion of 1 Gata4 allele to model the haploinsufficiency seen in HCC produced enlarged livers with a gene expression profile of persistent precursor proliferation and failed hepatocyte epithelial differentiation. HCC mimicked this gene expression profile, even in cases that were morphologically classified as well differentiated. HCC with intact chromosome 8p also featured GATA4 loss of function via GATA4 germline mutations that abrogated GATA4 interactions with a coactivator, MED12, or by inactivating mutations directly in GATA4 coactivators, including ARID1A. GATA4 reintroduction into GATA4-haploinsufficient HCC cells or ARID1A reintroduction into ARID1A-mutant/GATA4-intact HCC cells activated hundreds of hepatocyte genes and quenched the proliferative precursor program. Thus, disruption of GATA4-mediated transactivation in HCC suppresses hepatocyte epithelial differentiation to sustain replicative precursor phenotype.

Authors

Francis O. Enane, Wai Ho Shuen, Xiaorong Gu, Ebrahem Quteba, Bartlomiej Przychodzen, Hideki Makishima, Juraj Bodo, Joanna Ng, Chit Lai Chee, Rebecca Ba, Lip Seng Koh, Janice Lim, Rachael Cheong, Marissa Teo, Zhenbo Hu, Kwok Peng Ng, Jaroslaw Maciejewski, Tomas Radivoyevitch, Alexander Chung, London Lucien Ooi, Yu Meng Tan, Peng-Chung Cheow, Pierce Chow, Chung Yip Chan, Kiat Hon Lim, Lisa Yerian, Eric Hsi, Han Chong Toh, Yogen Saunthararajah

×

Guidelines: The Editorial Board will only consider letters that we deem relevant and of interest to our readers. We will not post data that have not been subjected to peer review, nor will we post letters that are essentially a reiteration of another letter. We reserve the right to edit any letter for length, content, and clarity. Authors will be notified by e-mail if their letters were accepted. No appeals will be considered.

Specific requirements: All letters must be 400 words or fewer. You may enter the letter as plain text or HTML. The author's name and e-mail address are required, and will be posted with the letter. All possible conflicts of interest must be noted, even if they are not posted. If you wish to include a figure (keep in mind that non-peer-reviewed data will not be posted), please contact the editors directly at editors@the-jci.org.

This field is required
This field is required
This field is required
This field is required
This field is required

This field is required
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts