Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Submit a Letter to the Editor

A lymphatic defect causes ocular hypertension and glaucoma in mice
Benjamin R. Thomson, … , Tsutomu Kume, Susan E. Quaggin
Benjamin R. Thomson, … , Tsutomu Kume, Susan E. Quaggin
Published September 9, 2014
Citation Information: J Clin Invest. 2014;124(10):4320-4324. https://doi.org/10.1172/JCI77162.
View: Text | PDF
Brief Report Vascular biology

A lymphatic defect causes ocular hypertension and glaucoma in mice

  • Text
  • PDF
Abstract

Glaucoma is a leading cause of blindness, afflicting more than 60 million people worldwide. Increased intraocular pressure (IOP) due to impaired aqueous humor drainage is a major risk factor for the development of glaucoma. Here, we demonstrated that genetic disruption of the angiopoietin/TIE2 (ANGPT/TIE2) signaling pathway results in high IOP, buphthalmos, and classic features of glaucoma, including retinal ganglion degeneration and vision loss. Eyes from mice with induced deletion of Angpt1 and Angpt2 (A1A2FloxWB mice) lacked drainage pathways in the corneal limbus, including Schlemm’s canal and lymphatic capillaries, which share expression of the PROX1, VEGFR3, and FOXC family of transcription factors. VEGFR3 and FOXCs have been linked to lymphatic disorders in patients, and FOXC1 has been linked to glaucoma. In contrast to blood endothelium, in which ANGPT2 is an antagonist of ANGPT1, we have shown that both ligands cooperate to regulate TIE2 in the lymphatic network of the eye. While A1A2FloxWB mice developed high IOP and glaucoma, expression of ANGPT1 or ANGPT2 alone was sufficient for ocular drainage. Furthermore, we demonstrated that loss of FOXC2 from lymphatics results in TIE2 downregulation, suggesting a mechanism for ocular defects in patients with FOXC mutations. These data reveal a pathogenetic and molecular basis for glaucoma and demonstrate the importance of angiopoietin ligand cooperation in the lymphatic endothelium.

Authors

Benjamin R. Thomson, Stefan Heinen, Marie Jeansson, Asish K. Ghosh, Anees Fatima, Hoon-Ki Sung, Tuncer Onay, Hui Chen, Shinji Yamaguchi, Aris N. Economides, Ann Flenniken, Nicholas W. Gale, Young-Kwon Hong, Amani Fawzi, Xiaorong Liu, Tsutomu Kume, Susan E. Quaggin

×

Guidelines: The Editorial Board will only consider letters that we deem relevant and of interest to our readers. We will not post data that have not been subjected to peer review, nor will we post letters that are essentially a reiteration of another letter. We reserve the right to edit any letter for length, content, and clarity. Authors will be notified by e-mail if their letters were accepted. No appeals will be considered.

Specific requirements: All letters must be 400 words or fewer. You may enter the letter as plain text or HTML. The author's name and e-mail address are required, and will be posted with the letter. All possible conflicts of interest must be noted, even if they are not posted. If you wish to include a figure (keep in mind that non-peer-reviewed data will not be posted), please contact the editors directly at editors@the-jci.org.

This field is required
This field is required
This field is required
This field is required
This field is required

This field is required

Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts