Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

UBA1-depleted neutrophils disrupt immune homeostasis and induce VEXAS-like autoinflammatory disease in mice
Ge Dong, Jingjing Liu, Wenyan Jin, Hongxi Zhou, Yuchen Wen, Zhiqin Wang, Keyao Xia, Jianlin Zhang, Linxiang Ma, Yunxi Ma, Lorie Chen Cai, Qiufan Zhou, Huaquan Wang, Wei Wei, Ying Fu, Zhigang Cai
Ge Dong, Jingjing Liu, Wenyan Jin, Hongxi Zhou, Yuchen Wen, Zhiqin Wang, Keyao Xia, Jianlin Zhang, Linxiang Ma, Yunxi Ma, Lorie Chen Cai, Qiufan Zhou, Huaquan Wang, Wei Wei, Ying Fu, Zhigang Cai
View: Text | PDF
Research Article Hematology Inflammation

UBA1-depleted neutrophils disrupt immune homeostasis and induce VEXAS-like autoinflammatory disease in mice

  • Text
  • PDF
Abstract

Vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome is a hemato-rheumatoid disease caused by somatic UBA1 mutations in hematopoietic stem cells (HSCs). The pathogenic cell type(s) responsible for the syndrome are unknown, and murine models recapitulating the disease are lacking. We report that loss of Uba1 in various mouse hematopoietic cell types resulted in pleiotropic consequences and demonstrate that an approximate 70% loss of Uba1 in neutrophils (NEs) of murine mutants induced nonlethal VEXAS-like symptoms. Depletion of Uba1 in HSCs induced extensive hematopoietic cell loss, whereas depletion of Uba1 in B cells, T cells, or megakaryocytes induced corresponding cell death, but these mutant mice appeared normal. Depletion of Uba1 in monocytes and NEs failed to induce cell death, and the mutant mice were viable. Among the tested models, only depletion of Uba1 in NEs induced autoinflammatory symptoms including increased counts and percentages of NEs, increased proinflammatory cytokines, presence of vacuoles in myeloid cells, splenomegaly, and dermatitis. Residual Uba1 was approximately 30% in the mutant NEs, which disrupted cellular hemostasis. Finally, genetic loss of the myeloid prosurvival regulator Morrbid partially mitigated the VEXAS-like symptoms. The established VEXAS-like murine model will further our understanding and treatment of the newly identified autoinflammatory syndrome prevalent among aged men.

Authors

Ge Dong, Jingjing Liu, Wenyan Jin, Hongxi Zhou, Yuchen Wen, Zhiqin Wang, Keyao Xia, Jianlin Zhang, Linxiang Ma, Yunxi Ma, Lorie Chen Cai, Qiufan Zhou, Huaquan Wang, Wei Wei, Ying Fu, Zhigang Cai

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts