Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Kinetic modeling and mathematical analysis indicate that acute phase gene expression in Hep 3B cells is regulated by both transcriptional and posttranscriptional mechanisms.
S L Jiang, … , J Sipe, I Kushner
S L Jiang, … , J Sipe, I Kushner
Published March 1, 1995
Citation Information: J Clin Invest. 1995;95(3):1253-1261. https://doi.org/10.1172/JCI117775.
View: Text | PDF
Research Article

Kinetic modeling and mathematical analysis indicate that acute phase gene expression in Hep 3B cells is regulated by both transcriptional and posttranscriptional mechanisms.

  • Text
  • PDF
Abstract

To evaluate the possible role of posttranscriptional mechanisms in the acute phase response, we determined the kinetics of transcription (by nuclear run-on assay) and mRNA accumulation of five human acute phase genes in Hep 3B cells incubated with conditioned medium from LPS-stimulated monocytes. Increase in mRNA accumulation was comparable to increase in transcription rate for fibrinogen-alpha and alpha-1 protease inhibitor, suggesting largely transcriptional regulation. In contrast, mRNA accumulation was about 10-20-fold greater than transcriptional increase for serum amyloid A, C3, and factor B, suggesting participation of posttranscriptional mechanisms. Since finding a disparity between the magnitudes of increase in mRNA and transcription does not definitively establish involvement of posttranscriptional mechanisms, we subjected our data to modeling studies and dynamic mathematical analysis to evaluate this possibility more rigorously. In modeling studies, accumulation curves resembling those observed for these three mRNAs could be generated from the nuclear run-on results only if posttranscriptional regulation was assumed. Dynamic mathematical analysis of relative transcription rates and relative mRNA abundance also strongly supported participation of posttranscriptional mechanisms. These observations suggest that posttranscriptional regulation plays a substantial role in induction of some, but not all acute phase proteins.

Authors

S L Jiang, D Samols, D Rzewnicki, S S Macintyre, I Greber, J Sipe, I Kushner

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts