Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Genetic basis for a lower prevalence of deficient CYP2D6 oxidative drug metabolism phenotypes in black Americans.
W E Evans, … , E P Scott, J S Lin
W E Evans, … , E P Scott, J S Lin
Published May 1, 1993
Citation Information: J Clin Invest. 1993;91(5):2150-2154. https://doi.org/10.1172/JCI116441.
View: Text | PDF
Research Article

Genetic basis for a lower prevalence of deficient CYP2D6 oxidative drug metabolism phenotypes in black Americans.

  • Text
  • PDF
Abstract

Debrisoquin hydroxylase (CYP2D6) is a cytochrome P450 enzyme that catalyzes the metabolism of > 30 commonly prescribed medications. Deficiency in CYP2D6 activity, inherited as an autosomal recessive trait, was found to be significantly less common in American blacks (1.9%) than whites (7.7%). To determine the genetic basis for this difference, inactivating CYP2D6 mutations were assessed by allele-specific PCR amplification and RFLP analyses of genomic DNA from 126 unrelated whites and 127 unrelated blacks. Blacks had a twofold lower frequency (8.5 versus 23%, P = 0.001) of the CYP2D6(B) mutation (point mutation at intron 3/exon 4 splice site), while complete deletion of the CYP2D6 gene (5.5% blacks, 2.4% whites), and the CYP2D6(A) mutation (single nucleotide deletion in exon 5; 0.24% blacks, 1.4% whites) were not different between the two groups. The prevalence of heterozygous genotypes was significantly lower in blacks (25 versus 42% of extensive metabolizers, P = 0.009), consistent with the observed prevalence of the deficient trait in blacks and whites. We conclude that the same CYP2D6 mutations lead to a loss of functional expression in blacks and whites, but American blacks have a lower prevalence of the deficient trait due to a lower frequency of the CYP2D6(B) mutation. This could explain racial differences in drug effects and disease risk.

Authors

W E Evans, M V Relling, A Rahman, H L McLeod, E P Scott, J S Lin

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts