Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Compartmentation of hexokinase in rat heart. A critical factor for tracer kinetic analysis of myocardial glucose metabolism.
R R Russell 3rd, … , J I Mommessin, H Taegtmeyer
R R Russell 3rd, … , J I Mommessin, H Taegtmeyer
Published November 1, 1992
Citation Information: J Clin Invest. 1992;90(5):1972-1977. https://doi.org/10.1172/JCI116076.
View: Text | PDF
Research Article

Compartmentation of hexokinase in rat heart. A critical factor for tracer kinetic analysis of myocardial glucose metabolism.

  • Text
  • PDF
Abstract

Radiolabeled analogues of 2-deoxyglucose are widely used to trace glucose metabolism in cell cultures, whole organs, and intact animals, although kinetic differences in transport and phosphorylation between these compounds and glucose exist. The present studies were undertaken to determine the effects of insulin stimulation on the phosphorylation of 2-deoxyglucose compared to glucose in the intact, saline-perfused working rat heart. Rates of glucose utilization determined from tritiated glucose differed from rates estimated from the accumulation of [14C]2-deoxyglucose in a nonconstant manner when comparing rates in the absence or presence of physiologic levels of insulin (13 microU/ml). The fraction of monophosphorylated hexoses that was accounted for by [14C]2-deoxyglucose 6-phosphate was dramatically decreased in hearts perfused in the presence of insulin. Additionally, hexokinase activity associated with the mitochondrial fraction of tissue extracts was increased in hearts stimulated by insulin. While this redistribution of hexokinase to the mitochondria did not affect the apparent affinity constant for glucose, hexokinase bound to mitochondria exhibited an 8.5-fold decrease in the affinity for 2-deoxyglucose when compared with hexokinase present in the cytosolic fraction. The findings are consistent with an insulin-mediated preferential uptake and phosphorylation of glucose compared to deoxyglucose. The results also imply that the redistribution of hexokinase and the differential effect of insulin on its affinity for tracer and tracee are responsible for changes in the "lumped constant" (i.e., the correction factor used to equate 2-deoxyglucose to glucose uptake). These changes must be taken into account when regional myocardial glucose metabolism is assessed by the 2-deoxyglucose method.

Authors

R R Russell 3rd, J M Mrus, J I Mommessin, H Taegtmeyer

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts