Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116076

Compartmentation of hexokinase in rat heart. A critical factor for tracer kinetic analysis of myocardial glucose metabolism.

R R Russell 3rd, J M Mrus, J I Mommessin, and H Taegtmeyer

Department of Medicine, University of Texas Medical School, Houston 77030.

Find articles by Russell, R. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Texas Medical School, Houston 77030.

Find articles by Mrus, J. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Texas Medical School, Houston 77030.

Find articles by Mommessin, J. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Texas Medical School, Houston 77030.

Find articles by Taegtmeyer, H. in: JCI | PubMed | Google Scholar

Published November 1, 1992 - More info

Published in Volume 90, Issue 5 on November 1, 1992
J Clin Invest. 1992;90(5):1972–1977. https://doi.org/10.1172/JCI116076.
© 1992 The American Society for Clinical Investigation
Published November 1, 1992 - Version history
View PDF
Abstract

Radiolabeled analogues of 2-deoxyglucose are widely used to trace glucose metabolism in cell cultures, whole organs, and intact animals, although kinetic differences in transport and phosphorylation between these compounds and glucose exist. The present studies were undertaken to determine the effects of insulin stimulation on the phosphorylation of 2-deoxyglucose compared to glucose in the intact, saline-perfused working rat heart. Rates of glucose utilization determined from tritiated glucose differed from rates estimated from the accumulation of [14C]2-deoxyglucose in a nonconstant manner when comparing rates in the absence or presence of physiologic levels of insulin (13 microU/ml). The fraction of monophosphorylated hexoses that was accounted for by [14C]2-deoxyglucose 6-phosphate was dramatically decreased in hearts perfused in the presence of insulin. Additionally, hexokinase activity associated with the mitochondrial fraction of tissue extracts was increased in hearts stimulated by insulin. While this redistribution of hexokinase to the mitochondria did not affect the apparent affinity constant for glucose, hexokinase bound to mitochondria exhibited an 8.5-fold decrease in the affinity for 2-deoxyglucose when compared with hexokinase present in the cytosolic fraction. The findings are consistent with an insulin-mediated preferential uptake and phosphorylation of glucose compared to deoxyglucose. The results also imply that the redistribution of hexokinase and the differential effect of insulin on its affinity for tracer and tracee are responsible for changes in the "lumped constant" (i.e., the correction factor used to equate 2-deoxyglucose to glucose uptake). These changes must be taken into account when regional myocardial glucose metabolism is assessed by the 2-deoxyglucose method.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1972
page 1972
icon of scanned page 1973
page 1973
icon of scanned page 1974
page 1974
icon of scanned page 1975
page 1975
icon of scanned page 1976
page 1976
icon of scanned page 1977
page 1977
Version history
  • Version 1 (November 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts