Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Receptor-mediated phagocytosis in human neutrophils is associated with increased formation of inositol phosphates and diacylglycerol. Elevation in cytosolic free calcium and formation of inositol phosphates can be dissociated from accumulation of diacylglycerol.
M Fällman, … , O Stendahl, T Andersson
M Fällman, … , O Stendahl, T Andersson
Published September 1, 1989
Citation Information: J Clin Invest. 1989;84(3):886-891. https://doi.org/10.1172/JCI114249.
View: Text | PDF
Research Article

Receptor-mediated phagocytosis in human neutrophils is associated with increased formation of inositol phosphates and diacylglycerol. Elevation in cytosolic free calcium and formation of inositol phosphates can be dissociated from accumulation of diacylglycerol.

  • Text
  • PDF
Abstract

Phagocytosis of C3bi- or IgG-opsonized yeast particles in human neutrophils was found to be associated with an increased formation of inositol phosphates and diacylglycerol. Pertussis toxin only marginally affected phagocytosis of IgG- and C3bi-opsonized particles and the associated formation of second messengers. Forskolin, which induced a threefold rise of cellular cAMP, however, markedly inhibited both C3bi- and IgG-mediated phagocytosis as well as the particle-induced formation of inositol phosphates and diacylglycerol. These observations are in contrast to what was found to occur with chemotactic factors and indicate that chemotactic and phagocytic signaling can be regulated independently in human neutrophils. Since C3bi-mediated phagocytosis has been shown to occur at vanishingly low cytosolic free calcium levels, calcium-depleted cells were used to study the importance of the inositol cycle for the engulfment of C3bi-opsonized particles. Despite a total lack of receptor-induced formation of inositol phosphates, a significantly increased accumulation of diacylglycerol accompanied the ingestion of C3bi-opsonized particles. These data show that the engulfment of C3bi-opsonized particles can occur independently of both a calcium transient and an increased inositol phosphate production. However, the observed accumulation of diacylglycerol, not derived from phosphoinositides, suggests that this second messenger play a role in the control of the engulfment process.

Authors

M Fällman, D P Lew, O Stendahl, T Andersson

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts