Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Cyclical oxidation-reduction of the C3 position on bile acids catalyzed by 3 alpha-hydroxysteroid dehydrogenase. II. Studies in the prograde and retrograde single-pass, perfused rat liver and inhibition by indomethacin.
H Takikawa, … , A Stolz, N Kaplowitz
H Takikawa, … , A Stolz, N Kaplowitz
Published September 1, 1987
Citation Information: J Clin Invest. 1987;80(3):861-866. https://doi.org/10.1172/JCI113144.
View: Text | PDF
Research Article

Cyclical oxidation-reduction of the C3 position on bile acids catalyzed by 3 alpha-hydroxysteroid dehydrogenase. II. Studies in the prograde and retrograde single-pass, perfused rat liver and inhibition by indomethacin.

  • Text
  • PDF
Abstract

[3 beta-3H, 24-14C]Lithocholic, chenodeoxycholic, and cholic acids were administered in tracer bolus doses either prograde or retrograde in the isolated perfused rat liver. Little 3H loss from cholic acid was observed, whereas with the other bile acids, 20-40% of the administered 3H was lost in a single pass from perfusate to bile. Most of the 3H loss occurred rapidly (5 min) and was recovered as [3H]water in perfusate. Excretion of bile acids was delayed with retrograde administration, and 3H loss was more extensive. In both prograde and retrograde studies, indomethacin markedly inhibited the excretion of the bolus of bile acid into bile. Indomethacin inhibited the extraction of glycocholate (50 microM) during steady state perfusion without affecting transport maximum for excretion. At lower glycocholate concentration (5 microM), indomethacin inhibited both extraction and excretion. A greater effect was seen on excretion in the latter case, which suggests that displacement of bile acid from the cytosolic protein lead to redistribution in the hepatocyte as well as reflux into the sinusoid. These data suggest that binding of bile acids to cytosolic 3 alpha-hydroxysteroid dehydrogenases occurs extensively during hepatic transit and is important in mediating the translocation of bile acids from the sinusoidal to canalicular pole of the cell.

Authors

H Takikawa, M Ookhtens, A Stolz, N Kaplowitz

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts