Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Parallel adaptation of the rabbit renal cortical sodium/proton antiporter and sodium/bicarbonate cotransporter in metabolic acidosis and alkalosis.
T Akiba, … , V K Rocco, D G Warnock
T Akiba, … , V K Rocco, D G Warnock
Published August 1, 1987
Citation Information: J Clin Invest. 1987;80(2):308-315. https://doi.org/10.1172/JCI113074.
View: Text | PDF
Research Article

Parallel adaptation of the rabbit renal cortical sodium/proton antiporter and sodium/bicarbonate cotransporter in metabolic acidosis and alkalosis.

  • Text
  • PDF
Abstract

Recent studies have shown that the bicarbonate reabsorptive capacity of the proximal tubule is increased in metabolic acidosis. For net bicarbonate reabsorption to be regulated, there may be changes in the rate of apical H+ secretion as well as in the basolateral base exit step. The present studies examined the rate of Na+/H+ exchange (acridine orange method) and Na+/HCO3 cotransport (22Na uptake) in apical and basolateral membranes prepared from the rabbit renal cortex by sucrose density gradient centrifugation. NH4Cl loading was used to produce acidosis (arterial pH, 7.27 +/- 0.03), and Cl-deficient diet with furosemide was used to produce alkalosis (arterial pH, 7.51 +/- 0.02). Maximal transport rate (Vmax) of Na+/H+ antiporter and Na+/HCO3 cotransporter were inversely related with plasma bicarbonate concentration from 6 to 39 mM. Furthermore, the maximal transport rates of both systems varied in parallel; when Vmax for the Na+/HCO3 cotransporter was plotted against Vmax for the Na+/H+ antiporter for each of the 24 groups of rabbits, the regression coefficient (r) was 0.648 (P less than 0.001). There was no effect of acidosis or alkalosis on affinity for Na+ of either transporter. We conclude that both apical and basolateral H+/HCO3 transporters adapt during acid-base disturbances, and that the maximal transport rates of both systems vary in parallel during such acid-base perturbations.

Authors

T Akiba, V K Rocco, D G Warnock

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts