Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes.
J F Caro, … , D Meelheim, G L Dohm
J F Caro, … , D Meelheim, G L Dohm
Published May 1, 1987
Citation Information: J Clin Invest. 1987;79(5):1330-1337. https://doi.org/10.1172/JCI112958.
View: Text | PDF
Research Article

Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes.

  • Text
  • PDF
Abstract

We have studied the structure and function of the insulin receptors in obese patients with and without noninsulin dependent diabetes mellitus (NIDDM) and in nonobese controls using partially purified receptors from muscle biopsies. Insulin binding was decreased in obesity due to reduced number of binding sites but no differences were observed in insulin binding between obese subjects with or without NIDDM. The structural characteristics of the receptors, as determined by affinity labeling methods and electrophoretic mobility of the beta-subunit, were not altered in obese or NIDDM compared to normal weight subjects. Furthermore, the ability of insulin to stimulate the autophosphorylation of the beta-subunit and the phosphoamino acid composition of the phosphorylated receptor were the same in all groups. However, insulin receptor kinase activity was decreased in obesity using Glu4:Tyr1 as exogenous phosphoacceptor without any appreciable additional defect when obesity was associated with NIDDM. Thus, our data are supportive of the hypothesis that in muscle of obese humans, insulin resistance is partially due to decreased insulin receptors and insulin receptor kinase activity. In NIDDM the defect(s) in muscle is probably distal to the insulin receptor kinase.

Authors

J F Caro, M K Sinha, S M Raju, O Ittoop, W J Pories, E G Flickinger, D Meelheim, G L Dohm

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts