Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Histochemical and biochemical correlates of ventilatory muscle fatigue in emphysematous hamsters.
G A Farkas, C Roussos
G A Farkas, C Roussos
Published October 1, 1984
Citation Information: J Clin Invest. 1984;74(4):1214-1220. https://doi.org/10.1172/JCI111530.
View: Text | PDF
Research Article

Histochemical and biochemical correlates of ventilatory muscle fatigue in emphysematous hamsters.

  • Text
  • PDF
Abstract

Histochemical and biochemical characteristics of the ventilatory muscles were evaluated in control and elastase-induced emphysematous hamsters. The emphysematous group was divided into sedentary and endurance-trained groups. Endurance training consisted of treadmill running, 1 h a day, 7 d a week. The experimental period lasted 24 wk. Histochemically, the diaphragm from the sedentary emphysematous hamsters revealed a selective fast fiber atrophy which was prevented by endurance training. Training also led to a hypertrophy of the slow, high oxidative fibers. The external intercostals from both emphysematous groups revealed an increased proportion of fast oxidative fibers at the expense of a decreased number of fast glycolytic fibers. However, the fast fibers in both emphysematous groups were significantly atrophied as compared with controls. The internal intercostals revealed no adaptive changes in either size or proportion distribution of the various fiber types. Biochemically, the diaphragm of the emphysematous animals had a significantly improved oxidative potential as measured by citrate synthase, and a reduced glycolytic capacity as indicated by phosphofructokinase activity, compared with controls. The magnitudes of the biochemical changes were similar in both emphysematous groups and were consistent for diaphragmatic samples taken from the costal and crural segments. The combined internal and external intercostals also underwent significant biochemical increases in their oxidative capacity. In addition, training of the emphysematous group led to an increased glycolytic potential of the intercostals.

Authors

G A Farkas, C Roussos

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts