Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Multicomponent analysis of amino acid transport in human lymphocytes. Diminished L-system transport in chronic leukemic B lymphocytes.
G B Segel, … , W Simon, M A Lichtman
G B Segel, … , W Simon, M A Lichtman
Published July 1, 1984
Citation Information: J Clin Invest. 1984;74(1):17-24. https://doi.org/10.1172/JCI111398.
View: Text | PDF
Research Article

Multicomponent analysis of amino acid transport in human lymphocytes. Diminished L-system transport in chronic leukemic B lymphocytes.

  • Text
  • PDF
Abstract

We have examined the amino acid transport in B cell chronic lymphocytic leukemia and compared it with the amino acid transport in isolated B lymphocytes from human blood and tonsils. L-system transport was measured with 2-amino-2-carboxy-bicyclo (2,2,1)-heptane, which is a synthetic amino acid whose transport is limited to the L-system. Amino acid uptake was subjected to a multicomponent analysis that partitioned the total uptake into the saturable carrier-mediated transport system and the uptake by diffusion. The maximal velocity of L-system transport in chronic lymphocytic leukemia cells, 81 mumol/1 cell water per min, was less than 10% that of blood B lymphocytes, which was 1,029 mumol/1 cell water per min. The uptake of 2-amino-2-carboxy-bicyclo (2,2,1)-heptane by tonsillar B cells, by a B lymphocyte cell line, and by blood T-lymphocytes was also 10-fold greater than that observed in chronic lymphocytic leukemic cells. Similarly, the L-system uptake of leucine and phenylalanine, which are naturally occurring amino acids usually transported primarily by the L-system, was reduced in chronic lymphocytic leukemic B cells to 15 and 10% of normal B cells, respectively. Total leucine uptake by chronic lymphocytic leukemic cells, however, was sustained at 30% of that expected because of transport via an alternative transport system. The A- or ASC-systems, the other major amino acid transport pathways, were not defective in chronic lymphocytic leukemic cells. These data indicate that there is a specific, profound decrease in L-system carrier-mediated amino acid transport in chronic lymphocytic leukemic B cells, as judged by the system-specific synthetic amino acid, 2-amino-2-carboxy-bicyclo (2,2,1)-heptane. This defect was confirmed by studies with two naturally occurring L-system amino acids, leucine and phenylalanine. This specific abnormality of membrane transport by chronic lymphocytic leukemic B lymphocytes is not shared by other B lymphocyte types, and thus appears to be related to the neoplastic nature of the leukemic B cells rather than to their immunologic subtype.

Authors

G B Segel, W Simon, M A Lichtman

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts