Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Insulin resistance in uremia. Characterization of insulin action, binding, and processing in isolated hepatocytes from chronic uremic rats.
J M Kauffman, J F Caro
J M Kauffman, J F Caro
Published March 1, 1983
Citation Information: J Clin Invest. 1983;71(3):698-708. https://doi.org/10.1172/JCI110816.
View: Text | PDF | Correction | Correction
Research Article

Insulin resistance in uremia. Characterization of insulin action, binding, and processing in isolated hepatocytes from chronic uremic rats.

  • Text
  • PDF
Abstract

We have developed a model in the rat that leads to a predictable degree of severe uremia to study the role of the liver in the insulin-resistant state of uremia. The uremic animals were euglycemic and had increased serum immunoreactive insulin when compared with their pair-fed controls. Insulin action, binding, internalization, and degradation were characterized in freshly isolated hepatocytes from uremic animals, sham-operated pair-fed, and ad lib.-fed controls. The basal rate of aminoisobutyric acid (AIB) uptake was increased in hepatocytes from both uremic and pair-fed control rats. However, while hepatocytes from uremic animals were refractory to insulin with regard to AIB uptake, there was no significant difference in the absolute increment above basal AIB uptake by hepatocytes from pair-fed and fed ad lib. animals at any insulin concentration studied. 125I-Insulin binding at 24 degrees C was higher in hepatocytes from uremic rats at every insulin concentration studied when compared with fed ad lib. controls. The time course of 125I-insulin binding to the cell and to the fractions that were membrane bound or internalized were studied at 37 degrees C. An increase in membrane-bound 125I-insulin at 37 degrees C was present also in hepatocytes from uremic animals. The same fraction of membrane-bound 125I-insulin was internalized in hepatocytes from all groups of animals. Extracellular and receptor-mediated 125I-insulin degradation at the plasma membrane and after internalization was studied at 37 degrees C by gel chromatography. There was a delayed and decreased rate of 125I-insulin degradation in hepatocytes from uremic rats in the three compartments. We conclude: (a) In chronic uremia the liver is refractory to insulin with regard to AIB uptake. (b) Insulin resistance in uremic rat liver is not due to defects in insulin binding or internalization. (c) Despite the high level of circulating immunoreactive insulin, hepatocytes from uremic rats did not show the expected "down regulation" of their insulin receptors or an increased rate of insulin degradation. These studies further emphasize the primary role of postbinding events in the regulation of insulin binding and degradation. The mechanism as to how the coordinated steps of insulin metabolism in the liver are disrupted in a pathological state is presently unknown.

Authors

J M Kauffman, J F Caro

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts