Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Splanchnic and leg exchange of glucose, amino acids, and free fatty acids during exercise in diabetes mellitus.
J Wahren, … , L Hagenfeldt, P Felig
J Wahren, … , L Hagenfeldt, P Felig
Published June 1, 1975
Citation Information: J Clin Invest. 1975;55(6):1303-1314. https://doi.org/10.1172/JCI108050.
View: Text | PDF
Research Article

Splanchnic and leg exchange of glucose, amino acids, and free fatty acids during exercise in diabetes mellitus.

  • Text
  • PDF
Abstract

The influence of exercise on leg and splanchnic exchange of substrates was examined in eight insulin-dependent diabetics 24 h after withdrawal of insulin and in eight healthy controls studied at rest and after 40 min of bicycle ergometer exercise at 55-60% of maximal capacity. In four of the diabetic subjects, basal arterial ketone acid levels were 3-4 mmol/ liter (ketotic diabetics) and in the remainder, below 1 mmol/liter (nonketotic diabetics). ,ree fatty acid (FFA) turnover and regional exchange were evaluated with 14-C- labeled oleic acid. Leg uptake of blood glucose rose 13-18 fold during exercise in both the diabetics and controls and accounted for a similar proportion of the total oxygen uptake by leg muscles (25-28%) in the two groups. In contrast, leg uptake of FFA corresponded to 39% of leg oxygen consumption in the diabetic group but only 27% in controls. Systemic turnover of oleic acid was similar in the two groups. Splanchnic glucose output increased during exercise 3-4 fold above resting levels in both groups. In the diabetics, splanchnic uptake of lactate, pyruvate, glycerol, and glycogenic amino acids rose more than twofold above resting levels and was fourfold greater than in exercising controls. Total precursor uptake could account for 30% of the splanchnic glucose output in the diabetic group. In contrast, in the controls, total splanchnic uptake of glucose precursors was no greater during exercise than in the resting state and could account for no more than 11% of splanchnic glucose output. The augmented precursor uptake during exercise in the diabetics was a consequence of increased splanchnic fractional extraction as well as increased peripheral production of gluconeogenic substrates. The arterial glucagon concentration was unchanged by exercise in both groups, but was higher in the diabetics. In the diabetic subjects with ketosis in the resting state, exercise elicited a rise in arterial glucose and FFA, an augmented splanchnic uptake of FFA, and a 2-3 fold increase in splanchnic output of 3-hydroxybutyrate. Uptake of 3-hydroxybutyrate by the exercising leg rose more rapidly than splanchnic production, resulting in a fall in arterial levels of 3-hydroxybutyrate. It is concluded that (a) glucose uptake by exercising muscle in hyperglycemic diabetics is no different from that of controls; (b) splanchnic glucose output rises during exercise to a similar extent in diabetics and controls, while uptake of gluconeogenic substrates is markedly higher in diabetics and accounts for a greater proportion of total splanchnic glucose output; (c) exercise in diabetic patients with mild ketosis is associated with a rise in blood glucose and FFA levels as well as augmented splanchnic production and peripheral uptake of ketone bodies.

Authors

J Wahren, L Hagenfeldt, P Felig

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts