Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Diphenylhydantoin and potassium transport in isolated nerve terminals
Antonio V. Escueta, Stanley H. Appel
Antonio V. Escueta, Stanley H. Appel
Published September 1, 1971
Citation Information: J Clin Invest. 1971;50(9):1977-1984. https://doi.org/10.1172/JCI106689.
View: Text | PDF
Research Article

Diphenylhydantoin and potassium transport in isolated nerve terminals

  • Text
  • PDF
Abstract

The antiepileptic action of diphenylhydantoin (DPH) has been explained by two different theories: (a) that DPH stimulates the Na-K pump; (b) that DPH specifically blocks the passive translocation of sodium. Since electrophysiological experiments have recently suggested abnormal synaptic mechanisms as the basis for epileptogenic discharges, the action of DPH on K transport within synaptic terminals isolated from “normal” rat brain cortex was examined directly. A rapid filtration technique was used to assess in vitro potassium transport within synaptosomes. In vivo DPH did not significantly change endogenous K content within synaptosomes. With sodium (50 mM) and potassium (10 mM) concentrations optimal for Na-K pump activity, in vivo and in vitro DPH (10-4 M) had minimal or no effects on total K uptake. DPH stimulated potassium uptake within synaptosomes under two situations: (a) at high sodium (50-100 mM) and low potassium (less than 2 mM) concentrations; (b) when synaptosomes were incubated with ouabain (10-4 M) 50 mM Na and 10 mM K. In both situations, K was leaking out of synaptic terminals and the enhancement in net K uptake roughly corresponded to the ouabain inhibitable segment. In the absence of ouabain, the stimulatory effects of DPH were not observed when K was 2 mM or higher and when Na was 10 mM or lower. The stimulatory effects of in vitro DPH appeared over a range of concentrations from 10-4 to 10-10 M while single intraperitoneal injections of DPH had to be administered for 2 days before its effects were observed on synaptosomal K transport. The present data provided direct evidence for DPH stimulation of active potassium transport within synaptosomes under ionic conditions simulating the depolarized state. At other ionic conditions, DPH had inhibitory or no effects on K uptake. Although the results do not specify whether the effects of DPH on the Na-K pump are direct or indirect, they suggest that the action of DPH depends upon the state of the membrane and the specific ionic environment.

Authors

Antonio V. Escueta, Stanley H. Appel

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts