Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106689

Diphenylhydantoin and potassium transport in isolated nerve terminals

Antonio V. Escueta and Stanley H. Appel

Neurosciences Laboratories, Division of Neurology, Duke University Medical Center, Durham, North Carolina 27706

Find articles by Escueta, A. in: PubMed | Google Scholar

Neurosciences Laboratories, Division of Neurology, Duke University Medical Center, Durham, North Carolina 27706

Find articles by Appel, S. in: PubMed | Google Scholar

Published September 1, 1971 - More info

Published in Volume 50, Issue 9 on September 1, 1971
J Clin Invest. 1971;50(9):1977–1984. https://doi.org/10.1172/JCI106689.
© 1971 The American Society for Clinical Investigation
Published September 1, 1971 - Version history
View PDF
Abstract

The antiepileptic action of diphenylhydantoin (DPH) has been explained by two different theories: (a) that DPH stimulates the Na-K pump; (b) that DPH specifically blocks the passive translocation of sodium. Since electrophysiological experiments have recently suggested abnormal synaptic mechanisms as the basis for epileptogenic discharges, the action of DPH on K transport within synaptic terminals isolated from “normal” rat brain cortex was examined directly. A rapid filtration technique was used to assess in vitro potassium transport within synaptosomes. In vivo DPH did not significantly change endogenous K content within synaptosomes. With sodium (50 mM) and potassium (10 mM) concentrations optimal for Na-K pump activity, in vivo and in vitro DPH (10-4 M) had minimal or no effects on total K uptake. DPH stimulated potassium uptake within synaptosomes under two situations: (a) at high sodium (50-100 mM) and low potassium (less than 2 mM) concentrations; (b) when synaptosomes were incubated with ouabain (10-4 M) 50 mM Na and 10 mM K. In both situations, K was leaking out of synaptic terminals and the enhancement in net K uptake roughly corresponded to the ouabain inhibitable segment. In the absence of ouabain, the stimulatory effects of DPH were not observed when K was 2 mM or higher and when Na was 10 mM or lower. The stimulatory effects of in vitro DPH appeared over a range of concentrations from 10-4 to 10-10 M while single intraperitoneal injections of DPH had to be administered for 2 days before its effects were observed on synaptosomal K transport. The present data provided direct evidence for DPH stimulation of active potassium transport within synaptosomes under ionic conditions simulating the depolarized state. At other ionic conditions, DPH had inhibitory or no effects on K uptake. Although the results do not specify whether the effects of DPH on the Na-K pump are direct or indirect, they suggest that the action of DPH depends upon the state of the membrane and the specific ionic environment.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1977
page 1977
icon of scanned page 1978
page 1978
icon of scanned page 1979
page 1979
icon of scanned page 1980
page 1980
icon of scanned page 1981
page 1981
icon of scanned page 1982
page 1982
icon of scanned page 1983
page 1983
icon of scanned page 1984
page 1984
Version history
  • Version 1 (September 1, 1971): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts