Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117659

Kinetics and regulation of human keratinocyte stem cell growth in short-term primary ex vivo culture. Cooperative growth factors from psoriatic lesional T lymphocytes stimulate proliferation among psoriatic uninvolved, but not normal, stem keratinocytes.

Z Bata-Csorgo, C Hammerberg, J J Voorhees, and K D Cooper

Immunodermatology Unit, University of Michigan, Ann Arbor 48109-0530.

Find articles by Bata-Csorgo, Z. in: PubMed | Google Scholar

Immunodermatology Unit, University of Michigan, Ann Arbor 48109-0530.

Find articles by Hammerberg, C. in: PubMed | Google Scholar

Immunodermatology Unit, University of Michigan, Ann Arbor 48109-0530.

Find articles by Voorhees, J. in: PubMed | Google Scholar

Immunodermatology Unit, University of Michigan, Ann Arbor 48109-0530.

Find articles by Cooper, K. in: PubMed | Google Scholar

Published January 1, 1995 - More info

Published in Volume 95, Issue 1 on January 1, 1995
J Clin Invest. 1995;95(1):317–327. https://doi.org/10.1172/JCI117659.
© 1995 The American Society for Clinical Investigation
Published January 1, 1995 - Version history
View PDF
Abstract

Flow cytometric analysis of primary ex vivo keratinocyte cultures demonstrated that stem cells, (beta 1 integrin+, keratin 1/keratin 10 [K1/K10-], proliferating cell nuclear antigen [PCNA-] [Bata-Csorgo, Zs., C. Hammerberg, J. J. Voorhees, and K. D. Cooper. 1993. J. Exp. Med. 178:1271-1281]) establish such cultures. This methodology also enabled the quantitation of synchronized recruitment of these cells from G0 into G1 of the cell cycle (PCNA expression), which preceded bright beta 1 integrin expression. (beta 1 integrinbright expression has been shown to be a characteristic feature of keratinocyte stem cells in culture (Jones, P. H., and F. M. Watt. 1993. Cell. 73:713-724). Using the above assay, we determined whether lesional T lymphocytes in psoriasis could be directly responsible for the induction of the stem cell hyperproliferation that is characteristic of this disease. Indeed, CD4+ T lymphocytes, cloned from lesional psoriatic skin and stimulated by immobilized anti-CD3 plus fibronectin, promoted psoriatic uninvolved keratinocyte stem cell proliferation via soluble factors. This induction appeared to be through accelerated recruitment of stem cells from their quiescent state (G0) into cell cycle. By contrast, normal keratinocyte stem cells exhibited no such growth stimulation. Supernatants exhibiting growth induction all contained high levels of GM-CSF and gamma-IFN, low IL-3 and TNF-alpha, and variable IL-4. Only anti-gamma-IFN antibody was able to neutralize growth stimulatory activity of the supernatants on psoriatic uninvolved keratinocyte stem cells. However, because recombinant gamma-IFN alone inhibited growth in this assay, these data suggest that, in psoriasis, gamma-IFN acts cooperatively with other growth factors in the immune induction of cell cycle progression by the normally quiescent stem cell keratinocytes.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 317
page 317
icon of scanned page 318
page 318
icon of scanned page 319
page 319
icon of scanned page 320
page 320
icon of scanned page 321
page 321
icon of scanned page 322
page 322
icon of scanned page 323
page 323
icon of scanned page 324
page 324
icon of scanned page 325
page 325
icon of scanned page 326
page 326
icon of scanned page 327
page 327
Version history
  • Version 1 (January 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts