Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117641

Regulation of G protein-coupled receptor kinase subtypes in activated T lymphocytes. Selective increase of beta-adrenergic receptor kinase 1 and 2.

A De Blasi, G Parruti, and M Sallese

Consorzio Mario Negri Sud, Istituto di Ricerche Farmacologiche Mario Negri, Santa Maria Imbaro, Italy.

Find articles by De Blasi, A. in: PubMed | Google Scholar

Consorzio Mario Negri Sud, Istituto di Ricerche Farmacologiche Mario Negri, Santa Maria Imbaro, Italy.

Find articles by Parruti, G. in: PubMed | Google Scholar

Consorzio Mario Negri Sud, Istituto di Ricerche Farmacologiche Mario Negri, Santa Maria Imbaro, Italy.

Find articles by Sallese, M. in: PubMed | Google Scholar

Published January 1, 1995 - More info

Published in Volume 95, Issue 1 on January 1, 1995
J Clin Invest. 1995;95(1):203–210. https://doi.org/10.1172/JCI117641.
© 1995 The American Society for Clinical Investigation
Published January 1, 1995 - Version history
View PDF
Abstract

Beta-adrenergic receptor kinase (beta ARK) is a serine-threonine kinase involved in the process of homologous desensitization of G-coupled receptors. beta ARK is a member of a multigene family, consisting of six known subtypes, also named G protein-coupled receptor kinases (GRK 1-6). In this study we investigated the expression of GRKs during the process of T cell activation, which is of fundamental importance in regulating immune responses. T cell activation was induced by exposing mononuclear leukocytes (MNL) to PHA and confirmed by tritiated thymidine incorporation measurement. A substantial increase of GRK activity (as measured by in vitro phosphorylation of rhodopsin) was found after 48 h (331 +/- 80% of controls) and 72 h (347 +/- 86% of controls) of exposure to PHA. A threefold increase of beta ARK1 immunoreactivity was found in MNL exposed to PHA for 72 h. Persistent activation of protein kinase C (PKC) by 10 nM 12-O-tetradecanoylphorbol-13-acetate (TPA) was able to increase beta ARK activity to the same extent as PHA, suggesting a PKC-mediated mechanism. The kinetic of beta-adrenergic-stimulated cAMP production was substantially modified in TPA and PHA-activated cells, indicating that the increased GRK activity resulted in an increased beta-adrenergic homologous desensitization. A three- to fourfold increase in GRK activity was also observed in a population of T cell blasts (> 97% CD3+) exposed to PHA for 48-72 h. A significant increase in beta ARK1 and beta ARK2 mRNA expression was observed 48 h after mitogen stimulation, while mRNA expression of GRK5 and GRK6 was not changed. In conclusion our data show that the expression of GRK subtypes is actively and selectively modulated according to the functional state of T lymphocytes.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 203
page 203
icon of scanned page 204
page 204
icon of scanned page 205
page 205
icon of scanned page 206
page 206
icon of scanned page 207
page 207
icon of scanned page 208
page 208
icon of scanned page 209
page 209
icon of scanned page 210
page 210
Version history
  • Version 1 (January 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts