Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116971

Lipopolysaccharide induces prostaglandin H synthase-2 protein and mRNA in human alveolar macrophages and blood monocytes.

S L Hempel, M M Monick, and G W Hunninghake

Department of Veterans Affairs Medical Center, Iowa City, Iowa 52242.

Find articles by Hempel, S. in: PubMed | Google Scholar

Department of Veterans Affairs Medical Center, Iowa City, Iowa 52242.

Find articles by Monick, M. in: PubMed | Google Scholar

Department of Veterans Affairs Medical Center, Iowa City, Iowa 52242.

Find articles by Hunninghake, G. in: PubMed | Google Scholar

Published January 1, 1994 - More info

Published in Volume 93, Issue 1 on January 1, 1994
J Clin Invest. 1994;93(1):391–396. https://doi.org/10.1172/JCI116971.
© 1994 The American Society for Clinical Investigation
Published January 1, 1994 - Version history
View PDF
Abstract

We and others have previously demonstrated that human alveolar macrophages produce more PGE2 in response to lipopolysaccharide (LPS) than do blood monocytes. We hypothesized that this observation was due to a greater increase in prostaglandin H synthase-2 (PGHS-2) enzyme mass in the macrophage compared to the monocyte. To evaluate this hypothesis, alveolar macrophages and blood monocytes were obtained from healthy nonsmoking volunteers. The cells were cultured in the presence of 0 to 10 micrograms/ml LPS. LPS induced the synthesis of large amounts of a new 75-kD protein in human alveolar macrophages, and a lesser amount in monocytes. Synthesis of this protein required more than 6 h and peaked in 24 to 48 h; the protein reacted with an anti-PGHS-2 antibody prepared against mouse PGHS-2. Associated with synthesis of the protein was a marked increase in LPS-stimulated and arachidonic acid-stimulated synthesis of PGE2 by alveolar macrophages compared to monocytes. Cells not exposed to LPS contained only PGHS-1 and synthesized very little PGE2 during culture or in response to exogenous arachidonic acid. An LPS-induced mRNA, which hybridized to a human cDNA probe for PGHS-2 mRNA, was produced in parallel with production of this new protein and was produced in much greater amounts by alveolar macrophages compared to blood monocytes. This mRNA was not detectable in cells not exposed to LPS. In contrast, both types of cells contain mRNA, which hybridizes to a cDNA probe for PGHS-1. This mRNA did not increase in response to LPS. LPS also had no effect on PGHS-1 protein. These data demonstrate that PGE2 synthesis in human alveolar macrophages and blood monocytes correlates to the mass of PGHS-2 in the cell. We conclude that the greater ability of the macrophage to synthesize PGE2 in response to LPS is due to greater synthesis of PGHS-2 by the macrophage.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 391
page 391
icon of scanned page 392
page 392
icon of scanned page 393
page 393
icon of scanned page 394
page 394
icon of scanned page 395
page 395
icon of scanned page 396
page 396
Version history
  • Version 1 (January 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts