Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117179

Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice.

S Ishibashi, J L Goldstein, M S Brown, J Herz, and D K Burns

Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas 75235.

Find articles by Ishibashi, S. in: PubMed | Google Scholar

Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas 75235.

Find articles by Goldstein, J. in: PubMed | Google Scholar

Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas 75235.

Find articles by Brown, M. in: PubMed | Google Scholar

Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas 75235.

Find articles by Herz, J. in: PubMed | Google Scholar

Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas 75235.

Find articles by Burns, D. in: PubMed | Google Scholar

Published May 1, 1994 - More info

Published in Volume 93, Issue 5 on May 1, 1994
J Clin Invest. 1994;93(5):1885–1893. https://doi.org/10.1172/JCI117179.
© 1994 The American Society for Clinical Investigation
Published May 1, 1994 - Version history
View PDF
Abstract

Mice that are homozygous for a targeted disruption of the LDL receptor gene (LDLR-/- mice) were fed a diet that contained 1.25% cholesterol, 7.5% cocoa butter, 7.5% casein, and 0.5% cholic acid. The total plasma cholesterol rose from 246 to > 1,500 mg/dl, associated with a marked increase in VLDL, intermediate density lipoproteins (IDL), and LDL cholesterol, and a decrease in HDL cholesterol. In wild type littermates fed the same diet, the total plasma cholesterol remained < 160 mg/dl. After 7 mo, the LDLR-/- mice developed massive xanthomatous infiltration of the skin and subcutaneous tissue. The aorta and coronary ostia exhibited gross atheromata, and the aortic valve leaflets were thickened by cholesterol-laden macrophages. No such changes were seen in the LDLR-/- mice on a normal chow diet, nor in wild type mice that were fed either a chow diet or the high-fat diet. We conclude that LDL receptors are largely responsible for the resistance of wild type mice to atherosclerosis. The cholesterol-fed LDLR-/- mice offer a new model for the study of environmental and genetic factors that modify the processes of atherosclerosis and xanthomatosis.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1885
page 1885
icon of scanned page 1886
page 1886
icon of scanned page 1887
page 1887
icon of scanned page 1888
page 1888
icon of scanned page 1889
page 1889
icon of scanned page 1890
page 1890
icon of scanned page 1891
page 1891
icon of scanned page 1892
page 1892
icon of scanned page 1893
page 1893
Version history
  • Version 1 (May 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts