Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115881

Vascular smooth muscle cell hypertrophy vs. hyperplasia. Autocrine transforming growth factor-beta 1 expression determines growth response to angiotensin II.

G H Gibbons, R E Pratt, and V J Dzau

Division of Cardiovascular Medicine, Stanford University School of Medicine, California 94303.

Find articles by Gibbons, G. in: JCI | PubMed | Google Scholar

Division of Cardiovascular Medicine, Stanford University School of Medicine, California 94303.

Find articles by Pratt, R. in: JCI | PubMed | Google Scholar

Division of Cardiovascular Medicine, Stanford University School of Medicine, California 94303.

Find articles by Dzau, V. in: JCI | PubMed | Google Scholar

Published August 1, 1992 - More info

Published in Volume 90, Issue 2 on August 1, 1992
J Clin Invest. 1992;90(2):456–461. https://doi.org/10.1172/JCI115881.
© 1992 The American Society for Clinical Investigation
Published August 1, 1992 - Version history
View PDF
Abstract

Recent observations in our laboratory suggest that angiotensin II (Ang II) is a bifunctional vascular smooth muscle cell (VSMC) growth modulator capable of inducing hypertrophy or inhibiting mitogen-stimulated DNA synthesis. Because transforming growth factor-beta 1 (TGF beta 1) has similar bifunctional effects on VSMC growth, we hypothesized that autocrine production of TGF beta 1 may mediate the growth modulatory effects of Ang II. Indeed, this study demonstrates that Ang II induces a severalfold increase in TGF beta 1 mRNA levels within 4 h that is dependent on de novo protein synthesis and appears to be mediated by activation of protein kinase C (PKC). Ang II not only stimulates the synthesis of latent TGF beta 1, but also promotes its conversion to the biologically active form as measured by bioassay. The coincubation of VSMCs with Ang II and control IgG has no significant mitogenic effect. However, the co-administration of Ang II and the anti-TGF beta 1 antibody stimulates significantly DNA synthesis and cell proliferation. We conclude that: (a) Ang II induces increased TGF beta 1 gene expression via a PKC dependent pathway involving de novo protein synthesis; (b) Ang II promotes the conversion of latent TGF beta 1 to its biologically active form; (c) Ang II modulates VSMC growth by activating both proliferative and antiproliferative pathways; and (d) Autocrine active TGF beta 1 appears to be an important determinant of VSMC growth by hypertrophy or hyperplasia.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 456
page 456
icon of scanned page 457
page 457
icon of scanned page 458
page 458
icon of scanned page 459
page 459
icon of scanned page 460
page 460
icon of scanned page 461
page 461
Version history
  • Version 1 (August 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts