Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115668

17 beta-estradiol inhibits interleukin-6 production by bone marrow-derived stromal cells and osteoblasts in vitro: a potential mechanism for the antiosteoporotic effect of estrogens.

G Girasole, R L Jilka, G Passeri, S Boswell, G Boder, D C Williams, and S C Manolagas

Section of Endocrinology and Metabolism, Veteran's Administration Medical Center, Indianapolis, Indiana 46202.

Find articles by Girasole, G. in: PubMed | Google Scholar

Section of Endocrinology and Metabolism, Veteran's Administration Medical Center, Indianapolis, Indiana 46202.

Find articles by Jilka, R. in: PubMed | Google Scholar

Section of Endocrinology and Metabolism, Veteran's Administration Medical Center, Indianapolis, Indiana 46202.

Find articles by Passeri, G. in: PubMed | Google Scholar

Section of Endocrinology and Metabolism, Veteran's Administration Medical Center, Indianapolis, Indiana 46202.

Find articles by Boswell, S. in: PubMed | Google Scholar

Section of Endocrinology and Metabolism, Veteran's Administration Medical Center, Indianapolis, Indiana 46202.

Find articles by Boder, G. in: PubMed | Google Scholar

Section of Endocrinology and Metabolism, Veteran's Administration Medical Center, Indianapolis, Indiana 46202.

Find articles by Williams, D. in: PubMed | Google Scholar

Section of Endocrinology and Metabolism, Veteran's Administration Medical Center, Indianapolis, Indiana 46202.

Find articles by Manolagas, S. in: PubMed | Google Scholar

Published March 1, 1992 - More info

Published in Volume 89, Issue 3 on March 1, 1992
J Clin Invest. 1992;89(3):883–891. https://doi.org/10.1172/JCI115668.
© 1992 The American Society for Clinical Investigation
Published March 1, 1992 - Version history
View PDF
Abstract

The effect of 17 beta-estradiol on interleukin-6 (IL-6) synthesis was examined in murine bone marrow-derived stromal cell lines, normal human bone-derived cells, and nontransformed osteoblast cell lines from mice and rats. In all these cell types IL-6 production was stimulated as much as 10,000-fold in response to the combination of recombinant interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF alpha). Addition of 17 beta-estradiol in the cultures exerted a dose-dependent inhibition of IL-1-, TNF-, and IL-1 + TNF-induced production of bioassayable IL-6. Testosterone and progesterone (but not 17 alpha-estradiol) also inhibited IL-6, but their effective concentrations were two orders of magnitude higher than 17 beta-estradiol. 17 beta-estradiol also decreased the levels of the IL-6 mRNA. In addition, estradiol inhibited both TNF-induced IL-6 production and osteoclast development in primary bone cell cultures derived from neonatal murine calvaria. The TNF-stimulated osteoclast development was also suppressed by a neutralizing monoclonal anti-IL-6 antibody. This in vitro evidence suggests, for the first time, a mechanistic paradigm by which estrogens might exert at least part of their antiresorptive influence on the skeleton.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 883
page 883
icon of scanned page 884
page 884
icon of scanned page 885
page 885
icon of scanned page 886
page 886
icon of scanned page 887
page 887
icon of scanned page 888
page 888
icon of scanned page 889
page 889
icon of scanned page 890
page 890
icon of scanned page 891
page 891
Version history
  • Version 1 (March 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts