Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI3949

A gender-related defect in lipid metabolism and glucose homeostasis in peroxisome proliferator- activated receptor alpha- deficient mice.

F Djouadi, C J Weinheimer, J E Saffitz, C Pitchford, J Bastin, F J Gonzalez, and D P Kelly

INSERM U319, Université Paris 7, Paris, France.

Find articles by Djouadi, F. in: PubMed | Google Scholar

INSERM U319, Université Paris 7, Paris, France.

Find articles by Weinheimer, C. in: PubMed | Google Scholar

INSERM U319, Université Paris 7, Paris, France.

Find articles by Saffitz, J. in: PubMed | Google Scholar

INSERM U319, Université Paris 7, Paris, France.

Find articles by Pitchford, C. in: PubMed | Google Scholar

INSERM U319, Université Paris 7, Paris, France.

Find articles by Bastin, J. in: PubMed | Google Scholar

INSERM U319, Université Paris 7, Paris, France.

Find articles by Gonzalez, F. in: PubMed | Google Scholar

INSERM U319, Université Paris 7, Paris, France.

Find articles by Kelly, D. in: PubMed | Google Scholar

Published September 15, 1998 - More info

Published in Volume 102, Issue 6 on September 15, 1998
J Clin Invest. 1998;102(6):1083–1091. https://doi.org/10.1172/JCI3949.
© 1998 The American Society for Clinical Investigation
Published September 15, 1998 - Version history
View PDF
Abstract

The peroxisome proliferator-activated receptor alpha (PPARalpha) is a nuclear receptor implicated in the control of cellular lipid utilization. To test the hypothesis that PPARalpha is activated as a component of the cellular lipid homeostatic response, the expression of PPARalpha target genes was characterized in response to a perturbation in cellular lipid oxidative flux caused by pharmacologic inhibition of mitochondrial fatty acid import. Inhibition of fatty acid oxidative flux caused a feedback induction of PPARalpha target genes encoding fatty acid oxidation enzymes in liver and heart. In mice lacking PPARalpha (PPARalpha-/-), inhibition of cellular fatty acid flux caused massive hepatic and cardiac lipid accumulation, hypoglycemia, and death in 100% of male, but only 25% of female PPARalpha-/- mice. The metabolic phenotype of male PPARalpha-/- mice was rescued by a 2-wk pretreatment with beta-estradiol. These results demonstrate a pivotal role for PPARalpha in lipid and glucose homeostasis in vivo and implicate estrogen signaling pathways in the regulation of cardiac and hepatic lipid metabolism.

Version history
  • Version 1 (September 15, 1998): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts