Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119705

Mechanism of hypoxic K loss in rabbit ventricle.

K Shivkumar, N A Deutsch, S T Lamp, K Khuu, J I Goldhaber, and J N Weiss

Department of Medicine, and the Cardiovascular Research Laboratory, UCLA School of Medicine, Los Angeles, California 90095, USA.

Find articles by Shivkumar, K. in: PubMed | Google Scholar

Department of Medicine, and the Cardiovascular Research Laboratory, UCLA School of Medicine, Los Angeles, California 90095, USA.

Find articles by Deutsch, N. in: PubMed | Google Scholar

Department of Medicine, and the Cardiovascular Research Laboratory, UCLA School of Medicine, Los Angeles, California 90095, USA.

Find articles by Lamp, S. in: PubMed | Google Scholar

Department of Medicine, and the Cardiovascular Research Laboratory, UCLA School of Medicine, Los Angeles, California 90095, USA.

Find articles by Khuu, K. in: PubMed | Google Scholar

Department of Medicine, and the Cardiovascular Research Laboratory, UCLA School of Medicine, Los Angeles, California 90095, USA.

Find articles by Goldhaber, J. in: PubMed | Google Scholar

Department of Medicine, and the Cardiovascular Research Laboratory, UCLA School of Medicine, Los Angeles, California 90095, USA.

Find articles by Weiss, J. in: PubMed | Google Scholar

Published October 1, 1997 - More info

Published in Volume 100, Issue 7 on October 1, 1997
J Clin Invest. 1997;100(7):1782–1788. https://doi.org/10.1172/JCI119705.
© 1997 The American Society for Clinical Investigation
Published October 1, 1997 - Version history
View PDF
Abstract

Although a critical factor causing lethal ischemic ventricular arrhythmias, net cellular K loss during myocardial ischemia and hypoxia is poorly understood. We investigated whether selective activation of ATP-sensitive K (KATP) channels causes net cellular K loss by examining the effects of the KATP channel agonist cromakalim on unidirectional K efflux, total tissue K content, and action potential duration (APD) in isolated arterially perfused rabbit interventricular septa. Despite increasing unidirectional K efflux and shortening APD to a comparable degree as hypoxia, cromakalim failed to induce net tissue K loss, ruling out activation of KATP channels as the primary cause of hypoxic K loss. Next, we evaluated a novel hypothesis about the mechanism of hypoxic K loss, namely that net K loss is a passive reflection of intracellular Na gain during hypoxia or ischemia. When the major pathways promoting Na influx were inhibited, net K loss during hypoxia was almost completely eliminated. These findings show that altered Na fluxes are the primary cause of net K loss during hypoxia, and presumably also in ischemia. Given its previously defined role during hypoxia and ischemia in promoting intracellular Ca overload and reperfusion injury, this newly defined role of intracellular Na accumulation as a primary cause of cellular K loss identifies it as a central pathogenetic factor in these settings.

Version history
  • Version 1 (October 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts