Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Oncology

  • 1,338 Articles
  • 14 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 10
  • 11
  • 12
  • …
  • 133
  • 134
  • Next →
Frameshift mutation spectra overlap between constitutional mismatch repair deficiency tumors and Lynch syndrome tumors
Yurong Song, … , Kim E. Nichols, Robert H. Shoemaker
Yurong Song, … , Kim E. Nichols, Robert H. Shoemaker
Published October 22, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI185999.
View: Text | PDF

Frameshift mutation spectra overlap between constitutional mismatch repair deficiency tumors and Lynch syndrome tumors

  • Text
  • PDF
Abstract

Authors

Yurong Song, Ryan N. Baugher, Todd B. Young, Brandon Somerville, Yuriko Mori, Ligia A. Pinto, Kim E. Nichols, Robert H. Shoemaker

×

Immune-related events in individuals with solid tumors on immunotherapy associate with Th17 and Th2 signatures
Chester J. Kao, … , Won Jin Ho, Mark Yarchoan
Chester J. Kao, … , Won Jin Ho, Mark Yarchoan
Published October 15, 2024
Citation Information: J Clin Invest. 2024;134(20):e176567. https://doi.org/10.1172/JCI176567.
View: Text | PDF | Corrigendum

Immune-related events in individuals with solid tumors on immunotherapy associate with Th17 and Th2 signatures

  • Text
  • PDF
Abstract

BACKGROUND Immune-related adverse events (irAEs) and their associated morbidity/mortality are a key concern for patients receiving immune checkpoint inhibitors (ICIs). Prospective evaluation of the drivers of irAEs in a diverse pan-tumor cohort is needed to identify patients at greatest risk and to develop rational treatment and interception strategies.METHODS In an observational study, we prospectively collected blood samples and performed regular clinical evaluations for irAEs in patients receiving ICI therapy as standard of care for solid tumors. We performed in-parallel analysis of cytokines by Luminex immunoassay and circulating immune cells by cytometry by time-of-flight (CyTOF) at baseline and on treatment to investigate mechanisms of irAEs.RESULTS We enrolled 111 patients, of whom 40.5% developed a symptomatic irAE (grade ≥ 2). Development of a grade ≥ 2 irAE was positively associated with the use of combination ICI and a history of an autoimmune disorder. Early changes in T helper 17 (Th17) (IL-6, IL-17f), type 2 (IL-5, IL-13, IL-25), and type 1 (TNF-α) cytokine signatures and congruent on-treatment expansions of Th17 and Th2 effector memory (Th2EM) T cell populations in peripheral blood were positively associated with the development of grade ≥2 irAEs. IL-6 levels were also associated with inferior cancer-specific survival and overall survival.CONCLUSIONS In a diverse, prospective pan-tumor cohort, Th17 and Th2 skewing during early ICI treatment was associated with the development of clinically relevant irAEs but not antitumor responses, providing possible targets for monitoring and therapeutic interventions.FUNDING Johns Hopkins Bloomberg-Kimmel Institute for Cancer Immunotherapy, the NCI SPORE in Gastrointestinal Cancers (P50 CA062924), NCI grant (R50CA243627 to LD), the NIH Center Core Grant (P30 CA006973), Swim Across America (to MY), NIAMS (K23AR075872 to LC), and imCORE-Genentech grant 137515 (to Johns Hopkins Medicine on behalf of MY).

Authors

Chester J. Kao, Soren Charmsaz, Stephanie L. Alden, Madelena Brancati, Howard L. Li, Aanika Balaji, Kabeer Munjal, Kathryn Howe, Sarah Mitchell, James Leatherman, Ervin Griffin, Mari Nakazawa, Hua-Ling Tsai, Ludmila Danilova, Chris Thoburn, Jennifer Gizzi, Nicole E. Gross, Alexei Hernandez, Erin M. Coyne, Sarah M. Shin, Jayalaxmi Suresh Babu, George W. Apostol, Jennifer Durham, Brian J. Christmas, Maximilian F. Konig, Evan J. Lipson, Jarushka Naidoo, Laura C. Cappelli, Aliyah Pabani, Yasser Ged, Marina Baretti, Julie Brahmer, Jean Hoffman-Censits, Tanguy Y. Seiwert, Rachel Garonce-Hediger, Aditi Guha, Sanjay Bansal, Laura Tang, Elizabeth M. Jaffee, G. Scott Chandler, Rajat Mohindra, Won Jin Ho, Mark Yarchoan

×

Genomic and transcriptomic features of androgen receptor signaling inhibitor resistance in metastatic castration-resistant prostate cancer
Xiaolin Zhu, … , Michiel S. van der Heijden, Felix Y. Feng
Xiaolin Zhu, … , Michiel S. van der Heijden, Felix Y. Feng
Published October 1, 2024
Citation Information: J Clin Invest. 2024;134(19):e178604. https://doi.org/10.1172/JCI178604.
View: Text | PDF

Genomic and transcriptomic features of androgen receptor signaling inhibitor resistance in metastatic castration-resistant prostate cancer

  • Text
  • PDF
Abstract

BACKGROUND Androgen receptor signaling inhibitors (ARSIs) have improved outcomes for patients with metastatic castration-resistant prostate cancer (mCRPC), but their clinical benefit is limited by treatment resistance.METHODS To investigate the mechanisms of ARSI resistance, we analyzed the whole-genome (n = 45) and transcriptome (n = 31) sequencing data generated from paired metastatic biopsies obtained before initiation of first-line ARSI therapy for mCRPC and after radiographic disease progression. We investigated the effects of genetic and pharmacologic modulation of SSTR1 in 22Rv1 cells, a representative mCRPC cell line.RESULTS We confirmed the predominant role of tumor genetic alterations converging on augmenting androgen receptor (AR) signaling and the increased transcriptional heterogeneity and lineage plasticity during the emergence of ARSI resistance. We further identified amplifications involving a putative enhancer downstream of the AR and transcriptional downregulation of SSTR1, encoding somatostatin receptor 1, in ARSI-resistant tumors. We found that patients with SSTR1-low mCRPC tumors derived less benefit from subsequent ARSI therapy in a retrospective cohort. We showed that SSTR1 was antiproliferative in 22Rv1 cells and that the FDA-approved drug pasireotide suppressed 22Rv1 cell proliferation.CONCLUSION Our findings expand the knowledge of ARSI resistance and point out actionable next steps, exemplified by potentially targeting SSTR1, to improve patient outcomes.FUNDING National Cancer Institute (NCI), NIH; Prostate Cancer Foundation; Conquer Cancer, American Society of Clinical Oncology Foundation; UCSF Benioff Initiative for Prostate Cancer Research; Netherlands Cancer Institute.

Authors

Xiaolin Zhu, Tatyanah Farsh, Daniël Vis, Ivan Yu, Haolong Li, Tianyi Liu, Martin Sjöström, Raunak Shrestha, Jeroen Kneppers, Tesa Severson, Meng Zhang, Arian Lundberg, Thaidy Moreno Rodriguez, Alana S. Weinstein, Adam Foye, Niven Mehra, Rahul R. Aggarwal, Andries M. Bergman, Eric J. Small, Nathan A. Lack, Wilbert Zwart, David A. Quigley, Michiel S. van der Heijden, Felix Y. Feng

×

Dual targeting macrophages and microglia is a therapeutic vulnerability in models of PTEN-deficient glioblastoma
Yang Liu, … , Amy B. Heimberger, Peiwen Chen
Yang Liu, … , Amy B. Heimberger, Peiwen Chen
Published October 1, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI178628.
View: Text | PDF

Dual targeting macrophages and microglia is a therapeutic vulnerability in models of PTEN-deficient glioblastoma

  • Text
  • PDF
Abstract

Tumor-associated macrophages and microglia (TAMs) are critical for tumor progression and therapy resistance in glioblastoma (GBM), a type of incurable brain cancer. We previously identified lysyl oxidase (LOX) and olfactomedin like-3 (OLFML3) as essential macrophage and microglia chemokines, respectively, in GBM. Here, single-cell transcriptomics and multiplex sequential immunofluorescence followed by functional studies demonstrate that macrophages negatively correlate with microglia in the GBM tumor microenvironment. LOX inhibition in PTEN-deficient GBM cells upregulates OLFML3 expression via the NF-κB-PATZ1 signaling pathway, inducing a compensatory increase of microglia infiltration. Dual targeting macrophages and microglia via inhibition of LOX and the CLOCK-OLFML3 axis generates potent anti-tumor effects and offers a complete tumor regression in more than 60% of animals when combined with anti-PD1 therapy in PTEN-deficient GBM mouse models. Thus, our findings provide a translational triple therapeutic strategy for this lethal disease.

Authors

Yang Liu, Junyan Wu, Hinda Najem, Yiyun Lin, Lizhi Pang, Fatima Khan, Fei Zhou, Heba Ali, Amy B. Heimberger, Peiwen Chen

×

Neuropilin-2 expressing cells in breast cancer are S-nitrosylation hubs that mitigate radiation-induced oxidative stress
Ayush Kumar, … , Thomas J. Fitzgerald, Arthur M. Mercurio
Ayush Kumar, … , Thomas J. Fitzgerald, Arthur M. Mercurio
Published October 1, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI181368.
View: Text | PDF

Neuropilin-2 expressing cells in breast cancer are S-nitrosylation hubs that mitigate radiation-induced oxidative stress

  • Text
  • PDF
Abstract

The high rate of recurrence after radiation therapy in triple-negative breast cancer (TNBC) indicates that novel approaches and targets are needed to enhance radiosensitivity. Here, we report that neuropilin-2 (NRP2), a receptor for vascular endothelial growth factor (VEGF) that is enriched on sub-populations of TNBC cells with stem cell properties, is an effective therapeutic target for sensitizing TNBC to radiotherapy. Specifically, VEGF/NRP2 signaling induces nitric oxide synthase 2 (NOS2) transcription by a mechanism dependent on Gli1. NRP2-expressing tumor cells serve as a hub to produce nitric oxide (NO), an autocrine and paracrine signaling metabolite, which promotes cysteine-nitrosylation of Kelch-like ECH-asssociated protein 1 (KEAP1) and, consequently, nuclear factor erythroid 2-related factor 2 (NFE2L2)-mediated transcription of antioxidant response genes. Inhibiting VEGF binding to NRP2, using a humanized monoclonal antibody (mAb), results in NFE2L2 degradation via KEAP1 rendering cell lines and organoids vulnerable to irradiation. Importantly, treatment of patient-derived xenografts with the NRP2 mAb and radiation resulted in significant tumor necrosis and regression compared to radiation alone. Together, these findings reveal a targetable mechanism of radioresistance and they support the use of NRP2 mAb as an effective radiosensitizer in TNBC.

Authors

Ayush Kumar, Hira Goel, Christi Wisniewski, Tao Wang, Yansong Geng, Mengdie Wang, Shivam Goel, Kai Hu, Rui Li, Lihua J. Zhu, Jennifer L. Clark, Lindsay M. Ferreira, Michael Brehm, Thomas J. Fitzgerald, Arthur M. Mercurio

×

YTHDF1 loss in dendritic cells potentiates radiation-induced antitumor immunity via STING-dependent type I IFN production
Chuangyu Wen, … , Hua Liang, Ralph R. Weichselbaum
Chuangyu Wen, … , Hua Liang, Ralph R. Weichselbaum
Published September 26, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI181612.
View: Text | PDF

YTHDF1 loss in dendritic cells potentiates radiation-induced antitumor immunity via STING-dependent type I IFN production

  • Text
  • PDF
Abstract

RNA N6-methyladenosine (m6A) reader YTHDF1 is implicated in cancer etiology and progression. We discovered that radiotherapy (RT) increased YTHDF1 expression in dendritic cells (DCs) of PBMCs from cancer patients, but not in other immune cells tested. Elevated YTHDF1 expression of DCs was associated with poor outcomes in patients receiving RT. We found that loss of Ythdf1 in DCs enhanced the antitumor effects of ionizing radiation (IR) via increasing the cross-priming capacity of DCs across multiple murine cancer models. Mechanistically, IR upregulated YTHDF1 expression in DCs through STING-IFN-I signaling. YTHDF1 in turn triggered STING degradation by increasing lysosomal cathepsins, thereby reducing IFN-I production. We created a YTHDF1 deletion/inhibition prototype DC vaccine, significantly improving the therapeutic effect of RT and radio-immunotherapy in a murine melanoma model. Our findings reveal a new layer of regulation between YTHDF1/m6A and STING in response to IR, which opens new paths for the development of YTHDF1-targeting therapies.

Authors

Chuangyu Wen, Liangliang Wang, András Piffkó, Dapeng Chen, Xianbin Yu, Katarzyna Zawieracz, Jason Bugno, Kaiting Yang, Emile Z. Naccasha, Fei Ji, Jiaai Wang, Xiaona Huang, Stephen Y. Luo, Lei Tan, Bin Shen, Cheng Luo, Megan E. McNerney, Steven J. Chmura, Ainhoa Arina, Sean P. Pitroda, Chuan He, Hua Liang, Ralph R. Weichselbaum

×

TSC/mTORC1 mediates mTORC2/AKT1 signaling in c-MYC-induced murine hepatocarcinogenesis via centromere protein M
Yi Zhou, … , Haichuan Wang, Xin Chen
Yi Zhou, … , Haichuan Wang, Xin Chen
Published September 26, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI174415.
View: Text | PDF

TSC/mTORC1 mediates mTORC2/AKT1 signaling in c-MYC-induced murine hepatocarcinogenesis via centromere protein M

  • Text
  • PDF
Abstract

Activated mTORC2/AKT signaling plays a role in hepatocellular carcinoma (HCC). Research has shown that TSC/mTORC1 and FOXO1 are distinct downstream effectors of AKT signaling in liver regeneration and metabolism. However, the mechanisms by which these pathways mediate mTORC2/AKT activation in HCC are not yet fully understood. Amplification and activation of c-MYC is a key molecular event in HCC. In this study, we explored the roles of TSC/mTORC1 and FOXO1 as downstream effectors of mTORC2/AKT1 in c-MYC-induced hepatocarcinogenesis. Using various genetic approaches in mice, we found that manipulating the FOXO pathway had minimal impact on c-MYC-induced HCC. In contrast, loss of mTORC2 inhibited c-MYC-induced HCC, an effect that was completely reversed by ablating TSC2, which activated mTORC1. Additionally, we discovered that p70/RPS6 and 4EBP1/eIF4E act downstream of mTORC1, regulating distinct molecular pathways. Notably, the 4EBP1/eIF4E cascade is crucial for cell proliferation and glycolysis in c-MYC-induced HCC. We also identified centromere protein M (CENPM) as a downstream target of the TSC2/mTORC1 pathway in c-MYC-driven hepatocarcinogenesis, and its ablation entirely inhibited c-MYC-dependent HCC formation. Our findings demonstrate that the TSC/mTORC1/CENPM pathway, rather than the FOXO cascade, is the primary signaling pathway regulating c-MYC-driven hepatocarcinogenesis. Targeting CENPM holds therapeutic potential for treating c-MYC-driven HCC.

Authors

Yi Zhou, Shu Zhang, guoteng Qiu, Xue Wang, Andrew Yonemura, Hongwei Xu, Guofei Cui, Shanshan Deng, Joanne Chun, Nianyong Chen, Meng Xu, Xinhua Song, Jingwen Wang, Zijing Xu, Youping Deng, Matthias Evert, Diego F. Calvisi, Shumei Lin, Haichuan Wang, Xin Chen

×

Egfl6 promotes ovarian cancer progression by enhancing the immunosuppressive functions of tumor-associated myeloid cells
Sarah Hamze Sinno, … , Ronald J. Buckanovich, Sandra Cascio
Sarah Hamze Sinno, … , Ronald J. Buckanovich, Sandra Cascio
Published September 23, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI175147.
View: Text | PDF

Egfl6 promotes ovarian cancer progression by enhancing the immunosuppressive functions of tumor-associated myeloid cells

  • Text
  • PDF
Abstract

Tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) play a critical role in resistance to immunotherapy. In this study, we identified epidermal growth factor-like 6 (Egfl6) as a new regulator of myeloid cell functions. Our analyses indicated that Egfl6, via binding with β3 integrins and activation of p38 and SYK signaling, acts as a chemotactic factor for myeloid cells migration and promotes their differentiation towards an immunosuppressive state. In syngeneic mouse models of ovarian cancer (OvCa), tumor expression of Egfl6 increased the intra-tumoral accumulation of polymorphonuclear (PMN) MDSCs and TAMs and their expression of immunosuppressive factors, including CXCL2, IL-10 and PD-L1. Consistent with this, in an immune ‘hot’ tumor model, Egfl6 expression eliminated response to a-PD-L1 therapy, while Egfl6 neutralizing antibody decreased the accumulation of tumor-infiltrating CD206+ TAMs and PMN-MDSCs and restored the efficacy of a-PD-L1 therapy. Supporting a role in human tumors, in human OvCa tissue samples, areas of high EGFL6 expression co-localized with myeloid cell infiltration. scRNAseq analyses revealed a correlation between EGFL6 and immune cell expression of immunosuppressive factors. Our data provide mechanistic insights into the onco-immunologic functions of EGFL6 in mediating tumor immune suppression and identified EGFL6 as a potential novel therapeutic target to enhance immunotherapy in OvCa patients.

Authors

Sarah Hamze Sinno, Joshua A. Imperatore, Shoumei Bai, Noémie Gomes-Jourdan, Nyasha Mafarachisi, Claudia Coronnello, Linan Zhang, Eldin Jašarević, Hatice U. Osmanbeyoglu, Ronald J. Buckanovich, Sandra Cascio

×

Survival of men with metastatic hormone-sensitive prostate cancer and adrenal-permissive HSD3B1 inheritance
Nima Sharifi, … , Ian D. Davis, Christopher J. Sweeney
Nima Sharifi, … , Ian D. Davis, Christopher J. Sweeney
Published September 17, 2024
Citation Information: J Clin Invest. 2024;134(18):e183583. https://doi.org/10.1172/JCI183583.
View: Text | PDF

Survival of men with metastatic hormone-sensitive prostate cancer and adrenal-permissive HSD3B1 inheritance

  • Text
  • PDF
Abstract

BACKGROUND Metastatic hormone-sensitive prostate cancer (mHSPC) is androgen dependent, and its treatment includes androgen deprivation therapy (ADT) with gonadal testosterone suppression. Since 2014, overall survival (OS) has been prolonged with addition of other systemic therapies, such as adrenal androgen synthesis blockers, potent androgen receptor blockers, or docetaxel, to ADT. HSD3B1 encodes the rate-limiting enzyme for nongonadal androgen synthesis, 3β-hydroxysteroid dehydrogenase-1, and has a common adrenal-permissive missense-encoding variant that confers increased synthesis of potent androgens from nongonadal precursor steroids and poorer prostate cancer outcomes.METHODS Our prespecified hypothesis was that poor outcome associated with inheritance of the adrenal-permissive HSD3B1 allele with ADT alone is reversed in patients with low-volume (LV) mHSPC with up-front ADT plus addition of androgen receptor (AR) antagonists to inhibit the effect of adrenal androgens. HSD3B1 genotype was obtained in 287 patients with LV disease treated with ADT + AR antagonist only in the phase III Enzalutamide in First Line Androgen Deprivation Therapy for Metastatic Prostate Cancer (ENZAMET) trial and was associated with clinical outcomes.RESULTS Patients who inherited the adrenal-permissive HSD3B1 allele had more favorable 5-year clinical progression-free survival and OS when treated with ADT plus enzalutamide or ADT plus nonsteroidal antiandrogen compared with their counterparts who did not have adrenal-permissive HSD3B1 inheritance. HSD3B1 was also associated with OS after accounting for known clinical variables. Patients with both genotypes benefited from early enzalutamide.CONCLUSION These data demonstrated an inherited physiologic driver of prostate cancer mortality is associated with clinical outcomes and is potentially pharmacologically reversible.FUNDING National Cancer Institute, NIH; Department of Defense; Prostate Cancer Foundation, Australian National Health and Medical Research Council.

Authors

Nima Sharifi, Robert Diaz, Hui-Ming Lin, Evan Roberts, Lisa G. Horvath, Andrew Martin, Martin R. Stockler, Sonia Yip, Vinod V. Subhash, Neil Portman, Ian D. Davis, Christopher J. Sweeney

×

BCL2 expression is enriched in advanced prostate cancer with features of lineage plasticity
Daniel Westaby, … , Johann de Bono, Adam Sharp
Daniel Westaby, … , Johann de Bono, Adam Sharp
Published September 17, 2024
Citation Information: J Clin Invest. 2024;134(18):e179998. https://doi.org/10.1172/JCI179998.
View: Text | PDF

BCL2 expression is enriched in advanced prostate cancer with features of lineage plasticity

  • Text
  • PDF
Abstract

The widespread use of potent androgen receptor signaling inhibitors (ARSIs) has led to an increasing emergence of AR-independent castration-resistant prostate cancer (CRPC), typically driven by loss of AR expression, lineage plasticity, and transformation to prostate cancers (PCs) that exhibit phenotypes of neuroendocrine or basal-like cells. The anti-apoptotic protein BCL2 is upregulated in neuroendocrine cancers and may be a therapeutic target for this aggressive PC disease subset. There is an unmet clinical need, therefore, to clinically characterize BCL2 expression in metastatic CRPC (mCRPC), determine its association with AR expression, uncover its mechanisms of regulation, and evaluate BCL2 as a therapeutic target and/or biomarker with clinical utility. Here, using multiple PC biopsy cohorts and models, we demonstrate that BCL2 expression is enriched in AR-negative mCRPC, associating with shorter overall survival and resistance to ARSIs. Moreover, high BCL2 expression associates with lineage plasticity features and neuroendocrine marker positivity. We provide evidence that BCL2 expression is regulated by DNA methylation, associated with epithelial-mesenchymal transition, and increased by the neuronal transcription factor ASCL1. Finally, BCL2 inhibition had antitumor activity in some, but not all, BCL2-positive PC models, highlighting the need for combination strategies to enhance tumor cell apoptosis and enrich response.

Authors

Daniel Westaby, Juan M. Jiménez-Vacas, Ines Figueiredo, Jan Rekowski, Claire Pettinger, Bora Gurel, Arian Lundberg, Denisa Bogdan, Lorenzo Buroni, Antje Neeb, Ana Padilha, Joe Taylor, Wanting Zeng, Souvik Das, Emily Hobern, Ruth Riisnaes, Mateus Crespo, Susana Miranda, Ana Ferreira, Brian P. Hanratty, Daniel Nava Rodrigues, Claudia Bertan, George Seed, Maria de Los Dolores Fenor de La Maza, Christina Guo, Juliet Carmichael, Rafael Grochot, Khobe Chandran, Anastasia Stavridi, Andreas Varkaris, Nataly Stylianou, Brett G. Hollier, Nina Tunariu, Steven P. Balk, Suzanne Carreira, Wei Yuan, Peter S. Nelson, Eva Corey, Michael Haffner, Johann de Bono, Adam Sharp

×
  • ← Previous
  • 1
  • 2
  • …
  • 10
  • 11
  • 12
  • …
  • 133
  • 134
  • Next →
  • ← Previous
  • 1
  • 2
  • Next →
E2F8 keeps liver cancer at bay
Alain de Bruin, Gustavo Leone, and colleagues find that the E2F8-mediated transcriptional repression in the developing liver suppresses hepatocellular carcinoma later in life …
Published July 25, 2016
Scientific Show StopperOncology

AIDing and abetting UV-independent skin cancer
Taichiro Nonaka and colleagues find that AID plays a role in the development of inflammation-driven, non-UV skin cancer
Published March 14, 2016
Scientific Show StopperOncology

CD37 keeps B cell lymphoma at bay
Charlotte de Winde, Sharon Veenbergen, and colleagues demonstrate that loss of CD37 expression relieves SOCS3-mediated suppression of IL-6 signaling and supports the development of B cell lymphoma…
Published January 19, 2016
Scientific Show StopperOncology

Maintaining endometrial epithelial barrier function
Jessica Bowser and colleagues identify a mechanism by which loss of CD73 promotes endometrial cancer progression…
Published December 7, 2015
Scientific Show StopperOncology

Sleuthing out the cellular source of hepatocellular carcinoma
Xueru Mu, Regina Español-Suñer, and colleagues show that tumors in murine hepatocellular carcinoma models are derived from hepatocytes and not from other liver resident cells …
Published September 8, 2015
Scientific Show StopperOncology

Live animal imaging in the far red
Ming Zhang and colleagues developed a far-red-absorbing reporter/probe system that can be used to image live animals and overcomes imaging limitations associated with conventional systems that use lower wavelengths of light…
Published September 8, 2015
Scientific Show StopperTechnical AdvanceOncology

Cancer cells fight off stress with ATF4
Souvik Dey, Carly Sayers, and colleagues reveal that activation of heme oxygenase 1 by ATF4 protects cancer cells from ECM detachment-induced death and promotes metastasis…
Published May 26, 2015
Scientific Show StopperOncology

Smothering Von Hippel-Lindau syndrome-associated phenotypes
Ana Metelo and colleagues demonstrate that specific inhibition of HIF2a ameliorates VHL-associated phenotypes and improves survival in a zebrafish model of disease…
Published April 13, 2015
Scientific Show StopperOncology

Blazing the trail for metastasis
Jill Westcott, Amanda Prechtl, and colleagues identify an epigenetically distinct population of breast cancer cells that promotes collective invasion…
Published April 6, 2015
Scientific Show StopperOncology

Dynamic focal adhesions
Wies van Roosmalen, Sylvia E. Le Dévédec, and colleagues screen for genes that alter cancer cell migration and demonstrate that SRPK1 promotes metastasis...
Published March 16, 2015
Scientific Show StopperOncology
  • ← Previous
  • 1
  • 2
  • Next →
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts