Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Stem cells

  • 154 Articles
  • 3 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • Next →
TGF-β/β2-spectrin/CTCF-regulated tumor suppression in human stem cell disorder Beckwith-Wiedemann syndrome
Jian Chen, … , Hidekazu Tsukamoto, Lopa Mishra
Jian Chen, … , Hidekazu Tsukamoto, Lopa Mishra
Published January 19, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI80937.
View: Text | PDF

TGF-β/β2-spectrin/CTCF-regulated tumor suppression in human stem cell disorder Beckwith-Wiedemann syndrome

  • Text
  • PDF
Abstract

Beckwith-Wiedemann syndrome (BWS) is a human stem cell disorder, and individuals with this disease have a substantially increased risk (~800-fold) of developing tumors. Epigenetic silencing of β2-spectrin (β2SP, encoded by SPTBN1), a SMAD adaptor for TGF-β signaling, is causally associated with BWS; however, a role of TGF-β deficiency in BWS-associated neoplastic transformation is unexplored. Here, we have reported that double-heterozygous Sptbn1+/– Smad3+/– mice, which have defective TGF-β signaling, develop multiple tumors that are phenotypically similar to those of BWS patients. Moreover, tumorigenesis-associated genes IGF2 and telomerase reverse transcriptase (TERT) were overexpressed in fibroblasts from BWS patients and TGF-β–defective mice. We further determined that chromatin insulator CCCTC-binding factor (CTCF) is TGF-β inducible and facilitates TGF-β–mediated repression of TERT transcription via interactions with β2SP and SMAD3. This regulation was abrogated in TGF-β–defective mice and BWS, resulting in TERT overexpression. Imprinting of the IGF2/H19 locus and the CDKN1C/KCNQ1 locus on chromosome 11p15.5 is mediated by CTCF, and this regulation is lost in BWS, leading to aberrant overexpression of growth-promoting genes. Therefore, we propose that loss of CTCF-dependent imprinting of tumor-promoting genes, such as IGF2 and TERT, results from a defective TGF-β pathway and is responsible at least in part for BWS-associated tumorigenesis as well as sporadic human cancers that are frequently associated with SPTBN1 and SMAD3 mutations.

Authors

Jian Chen, Zhi-Xing Yao, Jiun-Sheng Chen, Young Jin Gi, Nina M. Muñoz, Suchin Kundra, H. Franklin Herlong, Yun Seong Jeong, Alexei Goltsov, Kazufumi Ohshiro, Nipun A. Mistry, Jianping Zhang, Xiaoping Su, Sanaa Choufani, Abhisek Mitra, Shulin Li, Bibhuti Mishra, Jon White, Asif Rashid, Alan Yaoqi Wang, Milind Javle, Marta Davila, Peter Michaely, Rosanna Weksberg, Wayne L. Hofstetter, Milton J. Finegold, Jerry W. Shay, Keigo Machida, Hidekazu Tsukamoto, Lopa Mishra

×

Mesodermal iPSC–derived progenitor cells functionally regenerate cardiac and skeletal muscle
Mattia Quattrocelli, … , Stefan Janssens, Maurilio Sampaolesi
Mattia Quattrocelli, … , Stefan Janssens, Maurilio Sampaolesi
Published November 16, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI82735.
View: Text | PDF

Mesodermal iPSC–derived progenitor cells functionally regenerate cardiac and skeletal muscle

  • Text
  • PDF
Abstract

Conditions such as muscular dystrophies (MDs) that affect both cardiac and skeletal muscles would benefit from therapeutic strategies that enable regeneration of both of these striated muscle types. Protocols have been developed to promote induced pluripotent stem cells (iPSCs) to differentiate toward cardiac or skeletal muscle; however, there are currently no strategies to simultaneously target both muscle types. Tissues exhibit specific epigenetic alterations; therefore, source-related lineage biases have the potential to improve iPSC-driven multilineage differentiation. Here, we determined that differential myogenic propensity influences the commitment of isogenic iPSCs and a specifically isolated pool of mesodermal iPSC-derived progenitors (MiPs) toward the striated muscle lineages. Differential myogenic propensity did not influence pluripotency, but did selectively enhance chimerism of MiP-derived tissue in both fetal and adult skeletal muscle. When injected into dystrophic mice, MiPs engrafted and repaired both skeletal and cardiac muscle, reducing functional defects. Similarly, engraftment into dystrophic mice of canine MiPs from dystrophic dogs that had undergone TALEN-mediated correction of the MD-associated mutation also resulted in functional striatal muscle regeneration. Moreover, human MiPs exhibited the same capacity for the dual differentiation observed in murine and canine MiPs. The findings of this study suggest that MiPs should be further explored for combined therapy of cardiac and skeletal muscles.

Authors

Mattia Quattrocelli, Melissa Swinnen, Giorgia Giacomazzi, Jordi Camps, Ines Barthélemy, Gabriele Ceccarelli, Ellen Caluwé, Hanne Grosemans, Lieven Thorrez, Gloria Pelizzo, Manja Muijtjens, Catherine M. Verfaillie, Stephane Blot, Stefan Janssens, Maurilio Sampaolesi

×

Harnessing endogenous stem/progenitor cells for tendon regeneration
Chang H. Lee, … , Guodong Yang, Jeremy J. Mao
Chang H. Lee, … , Guodong Yang, Jeremy J. Mao
Published June 8, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI81589.
View: Text | PDF

Harnessing endogenous stem/progenitor cells for tendon regeneration

  • Text
  • PDF
Abstract

Current stem cell–based strategies for tissue regeneration involve ex vivo manipulation of these cells to confer features of the desired progenitor population. Recently, the concept that endogenous stem/progenitor cells could be used for regenerating tissues has emerged as a promising approach that potentially overcomes the obstacles related to cell transplantation. Here we applied this strategy for the regeneration of injured tendons in a rat model. First, we identified a rare fraction of tendon cells that was positive for the known tendon stem cell marker CD146 and exhibited clonogenic capacity, as well as multilineage differentiation ability. These tendon-resident CD146+ stem/progenitor cells were selectively enriched by connective tissue growth factor delivery (CTGF delivery) in the early phase of tendon healing, followed by tenogenic differentiation in the later phase. The time-controlled proliferation and differentiation of CD146+ stem/progenitor cells by CTGF delivery successfully led to tendon regeneration with densely aligned collagen fibers, normal level of cellularity, and functional restoration. Using siRNA knockdown to evaluate factors involved in tendon generation, we demonstrated that the FAK/ERK1/2 signaling pathway regulates CTGF-induced proliferation and differentiation of CD146+ stem/progenitor cells. Together, our findings support the use of endogenous stem/progenitor cells as a strategy for tendon regeneration without cell transplantation and suggest this approach warrants exploration in other tissues.

Authors

Chang H. Lee, Francis Y. Lee, Solaiman Tarafder, Kristy Kao, Yena Jun, Guodong Yang, Jeremy J. Mao

×

Inducible Gata1 suppression expands megakaryocyte-erythroid progenitors from embryonic stem cells
Ji-Yoon Noh, … , Mortimer Poncz, Mitchell J. Weiss
Ji-Yoon Noh, … , Mortimer Poncz, Mitchell J. Weiss
Published May 11, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI77670.
View: Text | PDF

Inducible Gata1 suppression expands megakaryocyte-erythroid progenitors from embryonic stem cells

  • Text
  • PDF
Abstract

Transfusion of donor-derived platelets is commonly used for thrombocytopenia, which results from a variety of clinical conditions and relies on a constant donor supply due to the limited shelf life of these cells. Embryonic stem (ES) and induced pluripotent stem (iPS) cells represent a potential source of megakaryocytes and platelets for transfusion therapies; however, the majority of current ES/iPS cell differentiation protocols are limited by low yields of hematopoietic progeny. In both mice and humans, mutations in the gene-encoding transcription factor GATA1 cause an accumulation of proliferating, developmentally arrested megakaryocytes, suggesting that GATA1 suppression in ES and iPS cell–derived hematopoietic progenitors may enhance megakaryocyte production. Here, we engineered ES cells from WT mice to express a doxycycline-regulated (dox-regulated) shRNA that targets Gata1 transcripts for degradation. Differentiation of these cells in the presence of dox and thrombopoietin (TPO) resulted in an exponential (at least 1013-fold) expansion of immature hematopoietic progenitors. Dox withdrawal in combination with multilineage cytokines restored GATA1 expression, resulting in differentiation into erythroblasts and megakaryocytes. Following transfusion into recipient animals, these dox-deprived mature megakaryocytes generated functional platelets. Our findings provide a readily reproducible strategy to exponentially expand ES cell–derived megakaryocyte-erythroid progenitors that have the capacity to differentiate into functional platelet-producing megakaryocytes.

Authors

Ji-Yoon Noh, Shilpa Gandre-Babbe, Yuhuan Wang, Vincent Hayes, Yu Yao, Paul Gadue, Spencer K. Sullivan, Stella T. Chou, Kellie R. Machlus, Joseph E. Italiano Jr., Michael Kyba, David Finkelstein, Jacob C. Ulirsch, Vijay G. Sankaran, Deborah L. French, Mortimer Poncz, Mitchell J. Weiss

×

S-nitrosoglutathione reductase–dependent PPARγ denitrosylation participates in MSC-derived adipogenesis and osteogenesis
Yenong Cao, … , Wayne Balkan, Joshua M. Hare
Yenong Cao, … , Wayne Balkan, Joshua M. Hare
Published March 23, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI73780.
View: Text | PDF

S-nitrosoglutathione reductase–dependent PPARγ denitrosylation participates in MSC-derived adipogenesis and osteogenesis

  • Text
  • PDF
Abstract

Bone marrow–derived mesenchymal stem cells (MSCs) are a common precursor of both adipocytes and osteoblasts. While it is appreciated that PPARγ regulates the balance between adipogenesis and osteogenesis, the roles of additional regulators of this process remain controversial. Here, we show that MSCs isolated from mice lacking S-nitrosoglutathione reductase, a denitrosylase that regulates protein S-nitrosylation, exhibited decreased adipogenesis and increased osteoblastogenesis compared with WT MSCs. Consistent with this cellular phenotype, S-nitrosoglutathione reductase–deficient mice were smaller, with reduced fat mass and increased bone formation that was accompanied by elevated bone resorption. WT and S-nitrosoglutathione reductase–deficient MSCs exhibited equivalent PPARγ expression; however, S-nitrosylation of PPARγ was elevated in S-nitrosoglutathione reductase–deficient MSCs, diminishing binding to its downstream target fatty acid–binding protein 4 (FABP4). We further identified Cys 139 of PPARγ as an S-nitrosylation site and demonstrated that S-nitrosylation of PPARγ inhibits its transcriptional activity, suggesting a feedback regulation of PPARγ transcriptional activity by NO-mediated S-nitrosylation. Together, these results reveal that S-nitrosoglutathione reductase–dependent modification of PPARγ alters the balance between adipocyte and osteoblast differentiation and provides checkpoint regulation of the lineage bifurcation of these 2 lineages. Moreover, these findings provide pathophysiological and therapeutic insights regarding MSC participation in adipogenesis and osteogenesis.

Authors

Yenong Cao, Samirah A. Gomes, Erika B. Rangel, Ellena C. Paulino, Tatiana L. Fonseca, Jinliang Li, Marilia B. Teixeira, Cecilia H. Gouveia, Antonio C. Bianco, Michael S. Kapiloff, Wayne Balkan, Joshua M. Hare

×

Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells
Jennifer L. Gori, … , Shahin Rafii, Hans-Peter Kiem
Jennifer L. Gori, … , Shahin Rafii, Hans-Peter Kiem
Published February 9, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI79328.
View: Text | PDF

Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells

  • Text
  • PDF
Abstract

Pluripotent stem cells (PSCs) represent an alternative hematopoietic stem cell (HSC) source for treating hematopoietic disease. The limited engraftment of human PSC–derived (hPSC-derived) multipotent progenitor cells (MPP) has hampered the clinical application of these cells and suggests that MPP require additional cues for definitive hematopoiesis. We hypothesized that the presence of a vascular niche that produces Notch ligands jagged-1 (JAG1) and delta-like ligand-4 (DLL4) drives definitive hematopoiesis. We differentiated hes2 human embryonic stem cells (hESC) and Macaca nemestrina–induced PSC (iPSC) line-7 with cytokines in the presence or absence of endothelial cells (ECs) that express JAG1 and DLL4. Cells cocultured with ECs generated substantially more CD34+CD45+ hematopoietic progenitors compared with cells cocultured without ECs or with ECs lacking JAG1 or DLL4. EC-induced cells exhibited Notch activation and expressed HSC-specific Notch targets RUNX1 and GATA2. EC-induced PSC-MPP engrafted at a markedly higher level in NOD/SCID/IL-2 receptor γ chain–null (NSG) mice compared with cytokine-induced cells, and low-dose chemotherapy-based selection further increased engraftment. Long-term engraftment and the myeloid-to-lymphoid ratio achieved with vascular niche induction were similar to levels achieved for cord blood–derived MPP and up to 20-fold higher than those achieved with hPSC-derived MPP engraftment. Our findings indicate that endothelial Notch ligands promote PSC-definitive hematopoiesis and production of long-term engrafting CD34+ cells, suggesting these ligands are critical for HSC emergence.

Authors

Jennifer L. Gori, Jason M. Butler, Yan-Yi Chan, Devikha Chandrasekaran, Michael G. Poulos, Michael Ginsberg, Daniel J. Nolan, Olivier Elemento, Brent L. Wood, Jennifer E. Adair, Shahin Rafii, Hans-Peter Kiem

×

Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus
Marta Byrska-Bishop, … , Mitchell J. Weiss, Stella T. Chou
Marta Byrska-Bishop, … , Mitchell J. Weiss, Stella T. Chou
Published January 26, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI75714.
View: Text | PDF

Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus

  • Text
  • PDF
Abstract

Germline GATA1 mutations that result in the production of an amino-truncated protein termed GATA1s (where s indicates short) cause congenital hypoplastic anemia. In patients with trisomy 21, similar somatic GATA1s-producing mutations promote transient myeloproliferative disease and acute megakaryoblastic leukemia. Here, we demonstrate that induced pluripotent stem cells (iPSCs) from patients with GATA1-truncating mutations exhibit impaired erythroid potential, but enhanced megakaryopoiesis and myelopoiesis, recapitulating the major phenotypes of the associated diseases. Similarly, in developmentally arrested GATA1-deficient murine megakaryocyte-erythroid progenitors derived from murine embryonic stem cells (ESCs), expression of GATA1s promoted megakaryopoiesis, but not erythropoiesis. Transcriptome analysis revealed a selective deficiency in the ability of GATA1s to activate erythroid-specific genes within populations of hematopoietic progenitors. Although its DNA-binding domain was intact, chromatin immunoprecipitation studies showed that GATA1s binding at specific erythroid regulatory regions was impaired, while binding at many nonerythroid sites, including megakaryocytic and myeloid target genes, was normal. Together, these observations indicate that lineage-specific GATA1 cofactor associations are essential for normal chromatin occupancy and provide mechanistic insights into how GATA1s mutations cause human disease. More broadly, our studies underscore the value of ESCs and iPSCs to recapitulate and study disease phenotypes.

Authors

Marta Byrska-Bishop, Daniel VanDorn, Amy E. Campbell, Marisol Betensky, Philip R. Arca, Yu Yao, Paul Gadue, Fernando F. Costa, Richard L. Nemiroff, Gerd A. Blobel, Deborah L. French, Ross C. Hardison, Mitchell J. Weiss, Stella T. Chou

×

Differentiation of hypothalamic-like neurons from human pluripotent stem cells
Liheng Wang, … , Dieter Egli, Rudolph L. Leibel
Liheng Wang, … , Dieter Egli, Rudolph L. Leibel
Published January 2, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI79220.
View: Text | PDF

Differentiation of hypothalamic-like neurons from human pluripotent stem cells

  • Text
  • PDF
Abstract

The hypothalamus is the central regulator of systemic energy homeostasis, and its dysfunction can result in extreme body weight alterations. Insights into the complex cellular physiology of this region are critical to the understanding of obesity pathogenesis; however, human hypothalamic cells are largely inaccessible for direct study. Here, we developed a protocol for efficient generation of hypothalamic neurons from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) obtained from patients with monogenetic forms of obesity. Combined early activation of sonic hedgehog signaling followed by timed NOTCH inhibition in human ESCs/iPSCs resulted in efficient conversion into hypothalamic NKX2.1+ precursors. Application of a NOTCH inhibitor and brain-derived neurotrophic factor (BDNF) further directed the cells into arcuate nucleus hypothalamic-like neurons that express hypothalamic neuron markers proopiomelanocortin (POMC), neuropeptide Y (NPY), agouti-related peptide (AGRP), somatostatin, and dopamine. These hypothalamic-like neurons accounted for over 90% of differentiated cells and exhibited transcriptional profiles defined by a hypothalamic-specific gene expression signature that lacked pituitary markers. Importantly, these cells displayed hypothalamic neuron characteristics, including production and secretion of neuropeptides and increased p-AKT and p-STAT3 in response to insulin and leptin. Our results suggest that these hypothalamic-like neurons have potential for further investigation of the neurophysiology of body weight regulation and evaluation of therapeutic targets for obesity.

Authors

Liheng Wang, Kana Meece, Damian J. Williams, Kinyui Alice Lo, Matthew Zimmer, Garrett Heinrich, Jayne Martin Carli, Charles A. Leduc, Lei Sun, Lori M. Zeltser, Matthew Freeby, Robin Goland, Stephen H. Tsang, Sharon L. Wardlaw, Dieter Egli, Rudolph L. Leibel

×

Transient vascularization of transplanted human adult–derived progenitors promotes self-organizing cartilage
Takanori Takebe, … , Jiro Maegawa, Hideki Taniguchi
Takanori Takebe, … , Jiro Maegawa, Hideki Taniguchi
Published September 9, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI76443.
View: Text | PDF

Transient vascularization of transplanted human adult–derived progenitors promotes self-organizing cartilage

  • Text
  • PDF
Abstract

Millions of patients worldwide are affected by craniofacial deformations caused by congenital defects or trauma. Current surgical interventions have limited therapeutic outcomes; therefore, methods that would allow cartilage restoration are of great interest. A number of studies on embryonic limb development have shown that chondrogenesis is initiated by cellular condensation, during which mesenchymal progenitors aggregate and form 3D structures. Here, we demonstrated efficient regeneration of avascular elastic cartilage from in vitro–grown mesenchymal condensation, which recapitulated the early stages of chondrogenesis, including transient vascularization. After transplantation of vascularized condensed progenitors into immunodeficient mice, we used an intravital imaging approach to follow cartilage maturation. We determined that endothelial cells are present inside rudimentary cartilage (mesenchymal condensation) prior to cartilage maturation. Recreation of endothelial interactions in culture enabled a recently identified population of adult elastic cartilage progenitors to generate mesenchymal condensation in a self-driven manner, without requiring the support of exogenous inductive factors or scaffold materials. Moreover, the culture-grown 3D condensed adult–derived progenitors were amenable to storage via simple freezing methods and efficiently reconstructed 3D elastic cartilage upon transplantation. Together, our results indicate that transplantation of endothelialized and condensed progenitors represents a promising approach to realizing a regenerative medicine treatment for craniofacial deformations.

Authors

Takanori Takebe, Shinji Kobayashi, Hiromu Suzuki, Mitsuru Mizuno, Yu-Min Chang, Emi Yoshizawa, Masaki Kimura, Ayaka Hori, Jun Asano, Jiro Maegawa, Hideki Taniguchi

×

Human muscle–derived stem/progenitor cells promote functional murine peripheral nerve regeneration
Mitra Lavasani, … , Bruno Péault, Johnny Huard
Mitra Lavasani, … , Bruno Péault, Johnny Huard
Published March 18, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI44071.
View: Text | PDF

Human muscle–derived stem/progenitor cells promote functional murine peripheral nerve regeneration

  • Text
  • PDF
Abstract

Peripheral nerve injuries and neuropathies lead to profound functional deficits. Here, we have demonstrated that muscle-derived stem/progenitor cells (MDSPCs) isolated from adult human skeletal muscle (hMDSPCs) can adopt neuronal and glial phenotypes in vitro and ameliorate a critical-sized sciatic nerve injury and its associated defects in a murine model. Transplanted hMDSPCs surrounded the axonal growth cone, while hMDSPCs infiltrating the regenerating nerve differentiated into myelinating Schwann cells. Engraftment of hMDSPCs into the area of the damaged nerve promoted axonal regeneration, which led to functional recovery as measured by sustained gait improvement. Furthermore, no adverse effects were observed in these animals up to 18 months after transplantation. Following hMDSPC therapy, gastrocnemius muscles from mice exhibited substantially less muscle atrophy, an increase in muscle mass after denervation, and reorganization of motor endplates at the postsynaptic sites compared with those from PBS-treated mice. Evaluation of nerve defects in animals transplanted with vehicle-only or myoblast-like cells did not reveal histological or functional recovery. These data demonstrate the efficacy of hMDSPC-based therapy for peripheral nerve injury and suggest that hMDSPC transplantation has potential to be translated for use in human neuropathies.

Authors

Mitra Lavasani, Seth D. Thompson, Jonathan B. Pollett, Arvydas Usas, Aiping Lu, Donna B. Stolz, Katherine A. Clark, Bin Sun, Bruno Péault, Johnny Huard

×
  • ← Previous
  • 1
  • 2
  • …
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • Next →
Transcriptional dysfunction in Beckwith-Wiedemann syndrome
Jian Chen and colleagues present evidence that dysfunctional TGF-β/β2SP/CTFC signaling underlies spontaneous tumor development in Beckwith-Wiedemann syndrome…
Published January 19, 2016
Scientific Show Stopper

Repairing injured tendons with endogenous stem cells
Chang Lee and colleagues harness endogenous stem/progenitor cells to enhance tendon repair in rats…
Published June 8, 2015
Scientific Show Stopper

Deriving hypothalamic-like neurons
Liheng Wang and colleagues reveal that hypothalamic-like neurons can be derived from human pluripotent stem cells….
Published January 2, 2015
Scientific Show Stopper
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts