Antiretroviral therapy (ART) prevents HIV-1 replication but does not eliminate the latent reservoir, the source of viral rebound if treatment is stopped. Autologous neutralizing antibodies (aNAbs) can block in vitro outgrowth of a subset of reservoir viruses and therefore potentially affect viral rebound upon ART interruption. We investigated aNAbs in 31 people with HIV-1 (PWH) on ART. Participants fell into two groups based on a high or low fraction of aNAb-resistant reservoir isolates, with most isolates being aNAb-resistant (IC50 >100 μg/ml). Time on uninterrupted ART was associated with higher aNAb resistance. However, pharmacodynamic analysis predicted that many isolates would be partially inhibited at physiologic IgG concentrations, to the same degree as by single antiretroviral drugs. Steep dose-response curve slopes, an indication of cooperativity, were observed for the rare isolates that were very strongly inhibited (>5 logs) by aNAbs. Resistance to aNAbs was not fully explained by declining in aNAb titers and may be driven partially by ADCC-mediated elimination of infected cells carrying aNAb-sensitive viruses over long time intervals, leaving only aNAb-resistant viruses which can contribute to viral rebound.
Natalie F. McMyn, Joseph Varriale, Hanna W. S. Wu, Vivek Hariharan, Milica Moskovljevic, Toong Seng Tan, Jun Lai, Anushka Singhal, Kenneth Lynn, Karam Mounzer, Pablo Tebas, Luis J. Montaner, Rebecca Hoh, Xu G. Yu, Mathias Lichterfeld, Francesco R. Simonetti, Colin Kovacs, Steven G. Deeks, Janet M. Siliciano, Robert F. Siliciano
HIV infection accelerates biological aging, but the contribution of the host’s age to this process is unknown. We investigated the influence of SIV infection in macaques (SIVmac) on the risk of comorbidities and aging in young and old rhesus macaques (RMs) by assessing pathogenesis markers, DNA methylation–based epigenetic age (EA), and EA acceleration (EAA) in blood and tissues. Initially, upon SIV infection, the young RMs showed greater resilience to CD4+ T cell depletion, better control of T cell activation, hypercoagulation, and excessive inflammation, yet this resilience was progressively lost in the advanced stages of infection. During the late stages of infection, the young RMs, but not the aged ones, showed an increase in EA in PBMCs; also, EAA in the cerebellum and heart of young RMs was higher compared with old RMs. SIV infection was more pathogenic in aged animals in early stages, leading to a more rapid disease progression; however, accelerated aging mostly affected young animals, so that the levels of multiple key pathogenesis markers in the young RMs converged toward those specific to aged ones in the late stages of infection. We conclude that SIV infection–driven age acceleration is tissue specific, and that host age influences the susceptibility of different tissues to enhanced aging.
Anna J. Jasinska, Ranjit Sivanandham, Sindhuja Sivanandham, Cuiling Xu, Juozas Gordevicius, Milda Milčiūtė, Robert T. Brooke, Paola Sette, Tianyu He, Egidio Brocca-Cofano, Benjamin B. Policicchio, Krishna Nayak, Saharsh Talwar, Haritha Annapureddy, Dongzhu Ma, Ruy M. Ribeiro, Cristian Apetrei, Ivona Pandrea
Despite effective antiretroviral therapy (ART), transcriptionally competent HIV-1 reservoirs persist and contribute to persistent immune activation in people living with HIV (PWH). HIV-1-infected macrophages are important mediators of chronic innate immune activation, though mechanisms remain unclear. We previously reported that nuclear export and cytoplasmic expression of HIV-1 intron-containing RNA (icRNA) activates mitochondrial antiviral signaling protein (MAVS)-mediated type I interferon (IFN) responses in macrophages. In this study, we demonstrate an essential role of melanoma differentiation-associated protein 5 (MDA5) in sensing HIV-1 icRNA and promoting MAVS-dependent IRF5 activation in macrophages. Suppression of MDA5, but not RIG-I expression nor disruption of endosomal TLR pathway, abrogated HIV-1 icRNA-induced type I IFN responses and IP-10 expression in macrophages. Furthermore, induction of IP-10 in macrophages upon HIV-1 icRNA sensing by MDA5 was dependent on IRF5. Additionally, monocytes and MDMs from older (>50 years) individuals exhibit constitutively higher levels of IRF5 expression compared to younger (<35 years) individuals, and HIV-1 icRNA induced IP-10 expression was significantly enhanced in older macrophages, which was attenuated upon ablation of IRF5 expression suggesting that IRF5 functions as a major mediator of pro-inflammatory response downstream of MDA5-dependent HIV-1 icRNA sensing, dysregulation of which might contribute to chronic inflammation in older PWH.
Sita Ramaswamy, Hisashi Akiyama, Jacob Berrigan, Andrés A. Quiñones-Molina, Alex J. Olson, Yunhan Chen, YanMei Liang, Andrew J. Henderson, Archana Asundi, Manish Sagar, Suryaram Gummuluru
Lung cancer is the leading cause of cancer mortality among people with HIV (PWH), with increased incidence and poor outcomes. This study explored whether the tumor microenvironment (TME) of HIV-associated non-small cell lung cancer (NSCLC) limits tumor-specific immune responses. With a matched cohort of NSCLC from PWH and people without HIV (PWOH), we used imaging mass cytometry, linear mixed effects model and AI-based pageRank mathematical algorithm based on spectral graph theory to demonstrate that HIV-associated tumors demonstrate differential distribution of tumor infiltrating CD8+ and CD4+ T cells, enriched for the expression of PD-1 and Lag-3, as well as activation and proliferation markers. We also demonstrate higher expression of immunoregulatory molecules (PD-L1, PD-L2, B7-H3, B7-H4, IDO1 and VISTA), among tumor-associated macrophages. Discrimination of cells between tumors from PWH versus PWOH was confirmed by spectral graph theory with 84.6% accuracy. Furthermore, we noted differences in spatial orientation of immune cells within the TME of PWH compared to PWOH. Additionally, cells from PWH, compared to PWOH, exhibited decreased tumor killing when exposed to HLA-matched NSCLC cell lines. In conclusion, our study demonstrates that the HIV-associated tumor microenvironment sustains a unique immune landscape, with evidence of immune cells with enhanced immunoregulatory phenotypes and impaired anti-tumor responses, with implications for response to immune checkpoint blocker therapies.
Shruti S. Desai, Syim Salahuddin, Ramsey Yusuf, Kishu Ranjan, Jianlei Gu, Lais Osmani, Ya-Wei Eileen Lin, Sameet Mehta, Ronen Talmon, Insoo Kang, Yuval Kluger, Hongyu Zhao, Kurt A. Schalper, Brinda Emu
We leveraged specimens from the RV217 prospective study that enrolled participants at high risk of HIV-1 acquisition to investigate how NK, conventional T cells, and unconventional T cells influence HIV-1 acquisition. We observed low levels of α4β7 expression on memory CD4 T cells and iNKT cells, two cell types highly susceptible to HIV-1 infection, in highly exposed seronegative (HESN) compared to highly exposed seroconverter (HESC) participants. NK cells from HESN had higher levels of α4β7 compared to HESC, presented a quiescent phenotype, and had a higher capacity to respond to opsonized target cells. We also measured translocated microbial products in plasma and found differences in phylum distribution between HESN and HESC that were associated with the immune phenotypes impacting the risk of HIV-1 acquisition. Finally, a logistic regression model combining features of NK cells activation, α4β7 expression on memory CD4 T cells, and Tbet expression by iNKT cells achieved the highest accuracy in identifying HESN and HESC participants. This immune signature comprised of increased α4β7 on cells susceptible to HIV infection combined with higher NK cells activation and lower gut homing potential could impact the efficacy of HIV-1 prevention strategies such as vaccines.
Kawthar Machmach, Kombo F. N'guessan, Rohit Farmer, Sucheta Godbole, Dohoon Kim, Lauren McCormick, Noemia S. Lima, Amy R. Henry, Farida Laboune, Isabella Swafford, Sydney K. Mika, Bonnie M. Slike, Jeffrey R. Currier, Leigh Anne Eller, Julie A. Ake, Sandhya Vasan, Merlin L. Robb, Shelly J. Krebs, Daniel C. Douek, Dominic Paquin-Proulx
The rapid viral rebound observed following treatment interruption, despite prolonged time on antiretroviral therapy with plasma HIV-RNA levels <40 copies/mL, suggests persistent HIV-1 reservoir(s) outside of the blood. Studies of HIV-1 proviruses in autopsy tissue samples have hinted at their persistence. However, their distribution across different anatomical compartments and their transcriptional activity within tissues remains unclear. The present study has examined molecular DNA and RNA reservoirs of HIV-1 in autopsy samples from 13 individuals with HIV-1 infection. Of the 13, 5 had detectable levels of HIV-1 RNA in plasma while 8 did not. Cell associated HIV-RNA was detected in 12 out of 13 donors and in 27 of the 30 different tissues examined. HIV-specific DNA and RNA were widely distributed and predominantly associated with clonal expansions. No significant differences were noted between the groups and no tissues were preferentially affected. These data imply that a substantial seeding of tissues with cells harboring transcriptionally active proviral DNA can be seen in the setting of HIV-1 infection despite ART and highlight one of the challenges in achieving an HIV-1 cure.
Hiromi Imamichi, Ven Natarajan, Francesca Scrimieri, Mindy Smith, Yunden Badralmaa, Marjorie Bosche, Jack M. Hensien, Thomas Buerkert, Weizhong Chang, Brad T. Sherman, Kanal Singh, H. Clifford Lane
BACKGROUND. The neonatal immune system is uniquely poised to generate broadly neutralizing antibodies (bnAbs) and thus infants are ideal for evaluating HIV vaccine candidates. We present the design and safety of a new-in-infants glucopyranosyl lipid A (GLA)-stable emulsion (SE) adjuvant admixed with a first-in-infant CH505 transmitter-founder (CH505TF) gp120 immunogen designed to induce precursors for bnAbs against HIV. METHODS. HVTN 135 is a phase I randomized, placebo-controlled trial of CH505TF+GLA-SE or placebo. Healthy infants aged ≤ 5 days, born to mothers living with HIV but HIV nucleic acid negative at birth were randomized to five doses of CH505TF + GLA-SE or placebo at birth and 8, 16, 32, and 54 weeks. RESULTS. 38 infants (median age = 4 days; interquartile range 4, 4.75 days) were enrolled November 2020 to January 2022. Among 28 (10) infants assigned to receive CH505TF + GLA-SE (placebo), most (32/38) completed the 5-dose immunization series and follow-up (35/38). Solicited local and systemic reactions were more frequent in vaccine (8, 28.6% local; 16, 57.1% systemic) vs. placebo recipients (1, 10% local, P = 0.25; 4, 40.0% systemic, P = 0.38). All events were Grade 1 except two Grade 2 events (pain, lethargy). Serious vaccine-related adverse events were not recorded. CONCLUSIONS. This study illustrates the feasibility of conducting trials of new-in-infants adjuvanted HIV vaccines in HIV-exposed infants receiving standard infant vaccinations. The safety profile of the CH505TF + GLA-SE vaccine was reassuring. TRIAL REGISTRATION. ClinicalTrials.gov NCT04607408. FUNDING. The trial was funded through National Institute of Allergy and Infectious Disease of the National Institutes of Health under grants UM1 AI068614 (HVTN Leadership and Operations Center), UM1 AI068635 (HVTN Statistical and Data Management Center), and UM1 AI068618 (HVTN Laboratory Center).
Avy Violari, Kennedy Otwombe, William Hahn, Shiyu Chen, Deirdre Josipovic, Vuyelwa Baba, Asimenia Angelidou, Kinga K. Smolen, Ofer Levy, Nonhlanhla N. Mkhize, Amanda S. Woodward Davis, Troy M. Martin, Barton F. Haynes, Wilton B. Williams, Zachary K. Sagawa, James G. Kublin, Laura Polakowski, Margaret Brewinski Isaacs, Catherine Yen, Georgia Tomaras, Lawrence Corey, Holly Janes, Glenda E. Gray
Background: Bacterial vaginosis (BV) is a dysbiosis of the vaginal microbiome that is prevalent among reproductive-age females worldwide. Adverse health outcomes associated with BV include an increased risk of sexually-acquired HIV, yet the immunological mechanisms underlying this association are not well understood. Methods: To investigate BV-driven changes to cervicovaginal tract (CVT) and circulating T cell phenotypes, Kinga Study participants with or without BV provided vaginal tract (VT) and ectocervical (CX) tissue biopsies and PBMC samples. Results: High-parameter flow cytometry revealed an increased frequency of cervical conventional CD4+ T cells (Tconv) expressing CCR5. However, we found no difference in number of CD3+CD4+CCR5+ cells in the CX or VT of BV+ versus BV- individuals, suggesting that BV-driven increased HIV susceptibility may not be solely attributed to increased CVT HIV target cell abundance. Flow cytometry also revealed that individuals with BV have an increased frequency of dysfunctional CX and VT CD39+ Tconv and CX tissue-resident CD69+CD103+ Tconv, reported to be implicated in HIV acquisition risk and replication. Many soluble immune factor differences in the CVT further support that BV elicits diverse and complex CVT immune alterations. Conclusion: Our comprehensive analysis expands on potential immunological mechanisms that may underlie the adverse health outcomes associated with BV including increased HIV susceptibility.
Finn MacLean, Adino Tesfahun Tsegaye, Jessica B. Graham, Jessica L. Swarts, Sarah C. Vick, Nicole B. Potchen, Irene Cruz Talavera, Lakshmi Warrier, Julien Dubrulle, Lena K. Schroeder, Ayumi Saito, Corinne Mar, Katherine K. Thomas, Matthias Mack, Michelle C. Sabo, Bhavna H. Chohan, Kenneth Ngure, Nelly Rwamba Mugo, Jairam R. Lingappa, Jennifer M. Lund
BACKGROUND. Naïve cells comprise 90% of the CD4+ T-cell population in neonates and exhibit distinct age-specific capacities for proliferation and activation. We hypothesized that HIV-infected naïve CD4+ T-cell populations in children on long-term antiretroviral therapy (ART) would thus be distinct from infected memory cells. METHODS. Peripheral blood naïve and memory CD4+ T cells from 8 children with perinatal HIV on ART initiated at age 1.7-17 months were isolated by FACS. DNA was extracted from sorted cells and HIV proviruses counted, evaluated for intactness, and subjected to integration site analysis. RESULTS. Naïve CD4+ T cells containing HIV proviruses were detected in children with 95% statistical confidence. A median of 4.7% of LTR-containing naïve CD4+ T cells also contained HIV genetic elements consistent with intactness. Full-length proviral sequencing confirmed intactness of one provirus. In the participant with the greatest level of naïve cell infection, ISA revealed infected expanded cell clones in both naïve and memory T cells with no common HIV integration sites detected between subsets. Divergent integration site profiles reflected differential gene expression patterns of naïve and memory T cells. CONCLUSIONS. These results demonstrate that HIV persists in both naïve and memory CD4+ T cells that undergo clonal expansion and harbor intact proviruses, suggesting that infected memory T-cell clones do not frequently arise from naïve cell differentiation in children with perinatal HIV on long-term ART. FUNDING. Center for Cancer Research, NCI and Office of AIDS Research funding to MFK, NCI FLEX funding to JWR. Children’s and Emory JFF pilot to MM.
Mary Grace Katusiime, Victoria Neer, Shuang Guo, Sean C. Patro, Wenjie Wang, Brian Luke, Adam A. Capoferri, Xiaolin Wu, Anna M. Horner, Jason W. Rausch, Ann Chahroudi, Maud Mavigner, Mary F. Kearney
The induction of durable protective immune responses is the main goal of prophylactic vaccines, and adjuvants play a role as drivers of such responses. Despite advances in vaccine strategies, a safe and effective HIV vaccine remains a significant challenge. The use of an appropriate adjuvant is crucial to the success of HIV vaccines. Here we assessed the saponin/MPLA nanoparticle (SMNP) adjuvant with an HIV envelope (Env) trimer, evaluating the safety and impact of multiple variables including adjuvant dose (16-fold dose range), immunization route, and adjuvant composition on the establishment of Env-specific memory T and B cell responses (TMem and BMem) and long-lived plasma cells in non-human primates (NHPs). Robust BMem were detected in all groups, but a 6-fold increase was observed in the highest SMNP dose group vs. the lowest dose group. Similarly, stronger vaccine responses were induced in the highest SMNP dose for CD40L+OX40+ CD4 TMem (11-fold), IFN-γ+ CD4 TMem (15-fold), IL21+ CD4 TMem (9-fold), circulating TFH (3.6-fold), bone marrow plasma cells (7-fold), and binding IgG (1.3-fold). Substantial tier-2 neutralizing antibodies were only observed in the higher SMNP dose groups. These investigations highlight the dose-dependent potency of SMNP in NHPs, which are relevant for human use and next-generation vaccines.
Parham Ramezani-Rad, Ester Marina-Zárate, Laura Maiorino, Amber Myers, Katarzyna Kaczmarek Michaels, Ivan S. Pires, Nathaniel I. Bloom, Mariane B. Melo, Ashley A. Lemnios, Paul G. Lopez, Christopher A. Cottrell, Iszac Burton, Bettina Groschel, Arpan Pradhan, Gabriela Stiegler, Magdolna Budai, Daniel Kumar, Sam Pallerla, Eddy Sayeed, Sangeetha L. Sagar, Sudhir Pai Kasturi, Koen K.A. Van Rompay, Lars Hangartner, Andreas Wagner, Dennis R. Burton, William R. Schief, Shane Crotty, Darrell J. Irvine