Abstract

High-risk neuroblastoma is a devastating malignancy with very limited therapeutic options. Here, we identify withaferin A (WA) as a natural ferroptosis-inducing agent in neuroblastoma, which acts through a novel double-edged mechanism. WA dose-dependently either activates the nuclear factor–like 2 pathway through targeting of Kelch-like ECH-associated protein 1 (noncanonical ferroptosis induction) or inactivates glutathione peroxidase 4 (canonical ferroptosis induction). Noncanonical ferroptosis induction is characterized by an increase in intracellular labile Fe(II) upon excessive activation of heme oxygenase-1, which is sufficient to induce ferroptosis. This double-edged mechanism might explain the superior efficacy of WA as compared with etoposide or cisplatin in killing a heterogeneous panel of high-risk neuroblastoma cells, and in suppressing the growth and relapse rate of neuroblastoma xenografts. Nano-targeting of WA allows systemic application and suppressed tumor growth due to an enhanced accumulation at the tumor site. Collectively, our data propose a novel therapeutic strategy to efficiently kill cancer cells by ferroptosis.

Authors

Behrouz Hassannia, Bartosz Wiernicki, Irina Ingold, Feng Qu, Simon Van Herck, Yulia Y. Tyurina, Hülya Bayır, Behnaz A. Abhari, Jose Pedro Friedmann Angeli, Sze Men Choi, Eline Meul, Karen Heyninck, Ken Declerck, Chandra Sekhar Chirumamilla, Maija Lahtela-Kakkonen, Guy Van Camp, Dmitri V. Krysko, Paul G. Ekert, Simone Fulda, Bruno G. De Geest, Marcus Conrad, Valerian E. Kagan, Wim Vanden Berghe, Peter Vandenabeele, Tom Vanden Berghe

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement