Abstract

The impact of food antigens on intestinal homeostasis and immune function is poorly understood. Here, we explored the impact of dietary antigens on the phenotype and fate of intestinal T cells. Physiological uptake of dietary proteins generated a highly activated CD44+Helios+CD4+ T cell population predominantly in Peyer patches. These cells are distinct from regulatory T cells and develop independently of the microbiota. Alimentation with a protein-free, elemental diet led to an atrophic small intestine with low numbers of activated T cells, including Tfh cells and decreased amounts of intestinal IgA and IL-10. Food-activated CD44+Helios+CD4+ T cells in the Peyer patches are controlled by the immune checkpoint molecule PD-1. Blocking the PD-1 pathway rescued these T cells from apoptosis and triggered proinflammatory cytokine production, which in IL-10–deficient mice was associated with intestinal inflammation. In support of these findings, our study of patients with Crohn’s disease revealed significantly reduced frequencies of apoptotic CD4+ T cells in Peyer patches as compared with healthy controls. These results suggest that apoptosis of diet-activated T cells is a hallmark of the healthy intestine.

Authors

Alexander Visekruna, Sabrina Hartmann, Yasmina Rodriguez Sillke, Rainer Glauben, Florence Fischer, Hartmann Raifer, Hans Mollenkopf, Wilhelm Bertrams, Bernd Schmeck, Matthias Klein, Axel Pagenstecher, Michael Lohoff, Ralf Jacob, Oliver Pabst, Paul William Bland, Maik Luu, Rossana Romero, Britta Siegmund, Krishnaraj Rajalingam, Ulrich Steinhoff

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement