Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI973

Distinct mechanisms of platelet aggregation as a consequence of different shearing flow conditions.

S Goto, Y Ikeda, E Saldívar, and Z M Ruggeri

Roon Research Center for Arteriosclerosis and Thrombosis, The Scripps Research Institute, La Jolla, California 92037, USA.

Find articles by Goto, S. in: JCI | PubMed | Google Scholar

Roon Research Center for Arteriosclerosis and Thrombosis, The Scripps Research Institute, La Jolla, California 92037, USA.

Find articles by Ikeda, Y. in: JCI | PubMed | Google Scholar

Roon Research Center for Arteriosclerosis and Thrombosis, The Scripps Research Institute, La Jolla, California 92037, USA.

Find articles by Saldívar, E. in: JCI | PubMed | Google Scholar

Roon Research Center for Arteriosclerosis and Thrombosis, The Scripps Research Institute, La Jolla, California 92037, USA.

Find articles by Ruggeri, Z. in: JCI | PubMed | Google Scholar

Published January 15, 1998 - More info

Published in Volume 101, Issue 2 on January 15, 1998
J Clin Invest. 1998;101(2):479–486. https://doi.org/10.1172/JCI973.
© 1998 The American Society for Clinical Investigation
Published January 15, 1998 - Version history
View PDF
Abstract

Platelet aggregation contributes to arresting bleeding at wound sites, but may cause occlusion of atherosclerotic vessels, thus curtailing blood flow to vital organs. According to current dogma, the integrin alphaIIbbeta3 plays an exclusive role in linking platelets to one another through interactions with fibrinogen or vWf. We demonstrate here that, depending on shearing flow conditions, this process may require vWf binding to glycoprotein Ibalpha, even when alphaIIbbeta3 is competent to bind adhesive ligands. Platelet activation induced solely by high shear stress is initiated by glycoprotein Ibalpha interaction with vWf, but results in aggregation only if the latter can bind concurrently to alphaIIbbeta3. In contrast, platelets exposed to high shear rate after activation by exogenous agonists such as ADP and epinephrine can aggregate when fibrinogen is the alphaIIbbeta3 adhesive ligand, yet only if vWf binding to glycoprotein Ibalpha can also occur. Thus, the latter interaction appears to provide a bond with biomechanical properties necessary to overcome the effects of high shear rate and initiate interplatelet cohesion. These findings highlight the distinct function of two adhesive receptors mediating platelet aggregation under varying fluid dynamic conditions, and modify the current interpretation of a crucial event in hemostasis and thrombosis.

Version history
  • Version 1 (January 15, 1998): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts