Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
GRK2 suppresses lymphomagenesis by inhibiting the MALT1 proto-oncoprotein
Jing Cheng, Linda R. Klei, Nathaniel E. Hubel, Ming Zhang, Rebekka Schairer, Lisa M. Maurer, Hanna B. Klei, Heejae Kang, Vincent J. Concel, Phillip C. Delekta, Eric V. Dang, Michelle A. Mintz, Mathijs Baens, Jason G. Cyster, Narayanan Parameswaran, Margot Thome, Peter C. Lucas, Linda M. McAllister-Lucas
Jing Cheng, Linda R. Klei, Nathaniel E. Hubel, Ming Zhang, Rebekka Schairer, Lisa M. Maurer, Hanna B. Klei, Heejae Kang, Vincent J. Concel, Phillip C. Delekta, Eric V. Dang, Michelle A. Mintz, Mathijs Baens, Jason G. Cyster, Narayanan Parameswaran, Margot Thome, Peter C. Lucas, Linda M. McAllister-Lucas
View: Text | PDF
Research Article Immunology Oncology

GRK2 suppresses lymphomagenesis by inhibiting the MALT1 proto-oncoprotein

  • Text
  • PDF
Abstract

Antigen receptor–dependent (AgR-dependent) stimulation of the NF-κB transcription factor in lymphocytes is a required event during adaptive immune response, but dysregulated activation of this signaling pathway can lead to lymphoma. AgR stimulation promotes assembly of the CARMA1-BCL10-MALT1 complex, wherein MALT1 acts as (a) a scaffold to recruit components of the canonical NF-κB machinery and (b) a protease to cleave and inactivate specific substrates, including negative regulators of NF-κB. In multiple lymphoma subtypes, malignant B cells hijack AgR signaling pathways to promote their own growth and survival, and inhibiting MALT1 reduces the viability and growth of these tumors. As such, MALT1 has emerged as a potential pharmaceutical target. Here, we identified G protein–coupled receptor kinase 2 (GRK2) as a new MALT1-interacting protein. We demonstrated that GRK2 binds the death domain of MALT1 and inhibits MALT1 scaffolding and proteolytic activities. We found that lower GRK2 levels in activated B cell–type diffuse large B cell lymphoma (ABC-DLBCL) are associated with reduced survival, and that GRK2 knockdown enhances ABC-DLBCL tumor growth in vitro and in vivo. Together, our findings suggest that GRK2 can function as a tumor suppressor by inhibiting MALT1 and provide a roadmap for developing new strategies to inhibit MALT1-dependent lymphomagenesis.

Authors

Jing Cheng, Linda R. Klei, Nathaniel E. Hubel, Ming Zhang, Rebekka Schairer, Lisa M. Maurer, Hanna B. Klei, Heejae Kang, Vincent J. Concel, Phillip C. Delekta, Eric V. Dang, Michelle A. Mintz, Mathijs Baens, Jason G. Cyster, Narayanan Parameswaran, Margot Thome, Peter C. Lucas, Linda M. McAllister-Lucas

×

Figure 7

Overexpression of GRK2 inhibits ABC-DLBCL proliferation.

Options: View larger image (or click on image) Download as PowerPoint
Overexpression of GRK2 inhibits ABC-DLBCL proliferation.
(A) HBL1 cells ...
(A) HBL1 cells demonstrate relatively low GRK2 mRNA expression. cDNA microarray data were retrieved from a public repository (ArrayExpress, E-GEOD-42203) and analyzed. DLBCL cell lines were grouped based on GCB or ABC subtype. (B) HBL-1 cells express the lowest level of GRK2 protein among all cell lines tested. GRK2 protein levels in a panel of GCB-DLBCL (OCI-Ly1, OCI-Ly7) and ABC-DLBCL (OCI-Ly3, OCI-Ly10, HBL1, and TMD8) cells were assessed by Western blot. Cell lysates were subjected to immunoblotting with antibodies as indicated. Blots are representative of 2 independent experiments. (C) GRK2-GFP is effectively expressed in HBL1 cells infected with lentivirus, as detected by flow cytometry. Data are representative of at least 5 independent experiments. (D) GRK2-GFP–positive cells fail to proliferate, while control GFP-only HBL1 cells proliferate efficiently. Proliferation of HBL1 cells was monitored using a cell clustering immune cell proliferation assay. Representative images of 3 independent experiments are shown. Phase-contrast images are overlaid with Incucyte Zoom (Essen Biosciences) confluence segmentation mask (magenta). Scale bars: 300 μm. (E) Cluster count quantification is shown with time as a continuous variable. HBL1 cell proliferation was measured at 5-hour intervals using Incucyte Zoom (n = 3). Two-way ANOVA and Šidák’s multiple-comparisons test were performed to show growth difference between the GRK2-GFP and control GFP groups. **P < 0.01, ****P < 0.0001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts