Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Neuroprotection mediated by changes in the endothelial actin cytoskeleton
Ulrich Laufs, Matthias Endres, Nancy Stagliano, Sepideh Amin-Hanjani, Dao-Shan Chui, Shui-Xiang Yang, Tommaso Simoncini, Masaru Yamada, Elena Rabkin, Philip G. Allen, Paul L. Huang, Michael Böhm, Frederick J. Schoen, Michael A. Moskowitz, James K. Liao
Ulrich Laufs, Matthias Endres, Nancy Stagliano, Sepideh Amin-Hanjani, Dao-Shan Chui, Shui-Xiang Yang, Tommaso Simoncini, Masaru Yamada, Elena Rabkin, Philip G. Allen, Paul L. Huang, Michael Böhm, Frederick J. Schoen, Michael A. Moskowitz, James K. Liao
View: Text | PDF
Article

Neuroprotection mediated by changes in the endothelial actin cytoskeleton

  • Text
  • PDF
Abstract

Cerebral blood flow is regulated by endothelium-derived nitric oxide (NO), and endothelial NO synthase–deficient (eNOS-deficient; eNOS–/–) mice develop larger cerebral infarctions following middle cerebral artery (MCA) occlusion. We report that disruption of Rho-mediated endothelial actin cytoskeleton leads to the upregulation of eNOS expression and reduces the severity of cerebral ischemia following MCA occlusion. Mice treated with the Rho inhibitor Clostridium botulinum C3 transferase (10 μg/d) or the actin cytoskeleton disrupter cytochalasin D (1 mg/kg) showed a two- to fourfold increase in vascular eNOS expression and activity. This increase in eNOS expression was not due to increases in eNOS gene transcription, but to prolongation of eNOS mRNA half-life from 10 ± 3 hours to 24 ± 4 hours. Indeed, endothelial cells overexpressing a dominant-negative Rho mutant (N19RhoA) exhibited decreased actin stress fiber formation and increased eNOS expression. Inhibition of vascular Rho guanosine-5′-triphosphate binding activity by the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor simvastatin increased cerebral blood flow to ischemic regions of the brain, and mice treated with simvastatin, C3 transferase, or cytochalasin D showed smaller cerebral infarctions following MCA occlusion. No neuroprotection was observed with these agents in eNOS–/– mice. These findings suggest that therapies which target the endothelial actin cytoskeleton may have beneficial effects in ischemic stroke.

Authors

Ulrich Laufs, Matthias Endres, Nancy Stagliano, Sepideh Amin-Hanjani, Dao-Shan Chui, Shui-Xiang Yang, Tommaso Simoncini, Masaru Yamada, Elena Rabkin, Philip G. Allen, Paul L. Huang, Michael Böhm, Frederick J. Schoen, Michael A. Moskowitz, James K. Liao

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 791 45
PDF 94 3
Figure 479 14
Table 41 0
Citation downloads 109 0
Totals 1,514 62
Total Views 1,576
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts