Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Targeted hypoxia reduction restores T cell infiltration and sensitizes prostate cancer to immunotherapy
Priyamvada Jayaprakash, … , Tomasz Zal, Michael A. Curran
Priyamvada Jayaprakash, … , Tomasz Zal, Michael A. Curran
Published September 6, 2018
Citation Information: J Clin Invest. 2018;128(11):5137-5149. https://doi.org/10.1172/JCI96268.
View: Text | PDF
Research Article Immunology Oncology

Targeted hypoxia reduction restores T cell infiltration and sensitizes prostate cancer to immunotherapy

  • Text
  • PDF
Abstract

Despite the success of immune checkpoint blockade against melanoma, many “cold” tumors like prostate cancer remain unresponsive. We found that hypoxic zones were prevalent across preclinical prostate cancer and resisted T cell infiltration even in the context of CTLA-4 and PD-1 blockade. We demonstrated that the hypoxia-activated prodrug TH-302 reduces or eliminates hypoxia in these tumors. Combination therapy with this hypoxia-prodrug and checkpoint blockade cooperated to cure more than 80% of tumors in the transgenic adenocarcinoma of the mouse prostate–derived (TRAMP-derived) TRAMP-C2 model. Immunofluorescence imaging showed that TH-302 drives an influx of T cells into hypoxic zones, which were expanded by checkpoint blockade. Further, combination therapy reduced myeloid-derived suppressor cell density by more than 50%, and durably reduced the capacity of the tumor to replenish the granulocytic subset. Spontaneous prostate tumors in TRAMP transgenic mice, which completely resist checkpoint blockade, showed minimal adenocarcinoma tumor burden at 36 weeks of age and no evidence of neuroendocrine tumors with combination therapy. Survival of Pb-Cre4, Ptenpc–/–Smad4pc–/– mice with aggressive prostate adenocarcinoma was also significantly extended by this combination of hypoxia-prodrug and checkpoint blockade. Hypoxia disruption and T cell checkpoint blockade may sensitize some of the most therapeutically resistant cancers to immunotherapy.

Authors

Priyamvada Jayaprakash, Midan Ai, Arthur Liu, Pratha Budhani, Todd Bartkowiak, Jie Sheng, Casey Ager, Courtney Nicholas, Ashvin R. Jaiswal, Yanqiu Sun, Krishna Shah, Sadhana Balasubramanyam, Nan Li, Guocan Wang, Jing Ning, Anna Zal, Tomasz Zal, Michael A. Curran

×

Figure 2

Hypoxia loss reverses T cell exclusion and suppression in prostate tumors.

Options: View larger image (or click on image) Download as PowerPoint
Hypoxia loss reverses T cell exclusion and suppression in prostate tumor...
(A) Mice bearing TRAMP-C2 tumors preimplanted 14 days earlier were treated with 1 cycle of TH-302 and/or antibody therapy. Tumors were isolated, OCT-mounted, frozen, sectioned, fixed, and stained for pimonidazole (FITC), CD31 (Alexa Fluor 647), CD11b (Alexa Fluor 546), and CD3 (V450). (B) Quantification of CD3+ T cells from tumors of mice treated in A. CD3+ T cells in at least 10 fields per tumor were counted, and at least 2 tumors per condition were analyzed. The average CD3+ T cell number per field is shown. (C and D) Mice were implanted with TRAMP-C2 tumors in 30% Matrigel and treated beginning on day 14 for 2 cycles of therapy. One day after therapy, tumor-infiltrating lymphocytes were purified and analyzed by flow cytometry. The intratumoral ratios of CD3+CD8+ T cells versus CD3+CD4+FoxP3+ Tregs (C) and CD11b+Gr-1+arginase+ MDSCs (D) are shown. C and D show individual mice from 5 independent experiments. Statistical significance between groups was determined by ANOVA. *P < 0.05, ***P < 0.001, ****P < 0.0001.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts