Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training
Tohru Fukai, … , Georg Kojda, David G. Harrison
Tohru Fukai, … , Georg Kojda, David G. Harrison
Published June 1, 2000
Citation Information: J Clin Invest. 2000;105(11):1631-1639. https://doi.org/10.1172/JCI9551.
View: Text | PDF
Article

Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training

  • Text
  • PDF
Abstract

The bioactivity of endothelium-derived nitric oxide (NO) reflects its rates of production and of inactivation by superoxide (O2•–), a reactive species dismutated by extracellular superoxide dismutase (ecSOD). We have now examined the complementary hypothesis, namely that NO modulates ecSOD expression. The NO donor DETA-NO increased ecSOD expression in a time- and dose-dependent manner in human aortic smooth muscle cells. This effect was prevented by the guanylate cyclase inhibitor ODQ and by the protein kinase G (PKG) inhibitor Rp-8-CPT-cGMP. Expression of ecSOD was also increased by 8-bromo-cGMP, but not by 8-bromo-cAMP. Interestingly, the effect of NO on ecSOD expression was prevented by inhibition of the MAP kinase p38 but not of the MAP kinase kinase p42/44, suggesting that NO modulates ecSOD expression via cGMP/PKG and p38MAP kinase–dependent pathways, but not through p42/44MAP kinase. In aortas from mice lacking the endothelial nitric oxide synthase (eNOS), ecSOD was reduced more than twofold compared to controls. Treadmill exercise training increased eNOS and ecSOD expression in wild-type mice but had no effect on ecSOD expression in mice lacking eNOS, suggesting that this effect of exercise is meditated by endothelium-derived NO. Upregulation of ecSOD expression by NO may represent an important feed-forward mechanism whereby endothelial NO stimulates ecSOD expression in adjacent smooth muscle cells, thus preventing O2•–-mediated degradation of NO as it traverses between the two cell types.

Authors

Tohru Fukai, Martin R. Siegfried, Masuko Ushio-Fukai, Yian Cheng, Georg Kojda, David G. Harrison

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
RNase protection assays showing time course (a and b) and dose dependenc...
RNase protection assays showing time course (a and b) and dose dependence (c and d) of ecSOD mRNA expression in response to DETA-NO in HASMs. HASMs (passages 4–8) were exposed to DETA-NO (100 μM) for the times indicated (a and b) and for the dose indicated at the 12 hour time point (c and d). The levels of ecSOD mRNA levels were determined using RNase protection assays using human ecSOD and GAPDH riboprobes as an internal control. (a and c) Representative RNase protection assay. (b and d) Mean data for three separate experiments. AP < 0.01; BP < 0.05 versus control cells.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts