Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mutations in the netrin-1 gene cause congenital mirror movements
Aurélie Méneret, Elizabeth A. Franz, Oriane Trouillard, Thomas C. Oliver, Yvrick Zagar, Stephen P. Robertson, Quentin Welniarz, R.J. MacKinlay Gardner, Cécile Gallea, Myriam Srour, Christel Depienne, Christine L. Jasoni, Caroline Dubacq, Florence Riant, Jean-Charles Lamy, Marie-Pierre Morel, Raphael Guérois, Jessica Andreani, Coralie Fouquet, Mohamed Doulazmi, Marie Vidailhet, Guy A. Rouleau, Alexis Brice, Alain Chédotal, Isabelle Dusart, Emmanuel Roze, David Markie
Aurélie Méneret, Elizabeth A. Franz, Oriane Trouillard, Thomas C. Oliver, Yvrick Zagar, Stephen P. Robertson, Quentin Welniarz, R.J. MacKinlay Gardner, Cécile Gallea, Myriam Srour, Christel Depienne, Christine L. Jasoni, Caroline Dubacq, Florence Riant, Jean-Charles Lamy, Marie-Pierre Morel, Raphael Guérois, Jessica Andreani, Coralie Fouquet, Mohamed Doulazmi, Marie Vidailhet, Guy A. Rouleau, Alexis Brice, Alain Chédotal, Isabelle Dusart, Emmanuel Roze, David Markie
View: Text | PDF
Research Article Development Neuroscience

Mutations in the netrin-1 gene cause congenital mirror movements

  • Text
  • PDF
Abstract

Netrin-1 is a secreted protein that was first identified 20 years ago as an axon guidance molecule that regulates midline crossing in the CNS. It plays critical roles in various tissues throughout development and is implicated in tumorigenesis and inflammation in adulthood. Despite extensive studies, no inherited human disease has been directly associated with mutations in NTN1, the gene coding for netrin-1. Here, we have identified 3 mutations in exon 7 of NTN1 in 2 unrelated families and 1 sporadic case with isolated congenital mirror movements (CMM), a disorder characterized by involuntary movements of one hand that mirror intentional movements of the opposite hand. Given the diverse roles of netrin-1, the absence of manifestations other than CMM in NTN1 mutation carriers was unexpected. Using multimodal approaches, we discovered that the anatomy of the corticospinal tract (CST) is abnormal in patients with NTN1-mutant CMM. When expressed in HEK293 or stable HeLa cells, the 3 mutated netrin-1 proteins were almost exclusively detected in the intracellular compartment, contrary to WT netrin-1, which is detected in both intracellular and extracellular compartments. Since netrin-1 is a diffusible extracellular cue, the pathophysiology likely involves its loss of function and subsequent disruption of axon guidance, resulting in abnormal decussation of the CST.

Authors

Aurélie Méneret, Elizabeth A. Franz, Oriane Trouillard, Thomas C. Oliver, Yvrick Zagar, Stephen P. Robertson, Quentin Welniarz, R.J. MacKinlay Gardner, Cécile Gallea, Myriam Srour, Christel Depienne, Christine L. Jasoni, Caroline Dubacq, Florence Riant, Jean-Charles Lamy, Marie-Pierre Morel, Raphael Guérois, Jessica Andreani, Coralie Fouquet, Mohamed Doulazmi, Marie Vidailhet, Guy A. Rouleau, Alexis Brice, Alain Chédotal, Isabelle Dusart, Emmanuel Roze, David Markie

×

Figure 3

CST analysis using tractography.

Options: View larger image (or click on image) Download as PowerPoint
CST analysis using tractography.
(A) Illustration of crossed (blue) and ...
(A) Illustration of crossed (blue) and uncrossed (red) CSTs. Images show the ROI used to reconstruct the CST at the base of the pontine nuclei (i), the anterior pyramid in the upper medulla (ii), and the crossed lateral (yellow) funiculus of the upper cervical cord (iii). For example, the crossed CST from the right primary motor cortex (M1) to the left upper cervical cord was reconstructed excluding fibers reaching the left medial and the right lateral and medial funiculus (red). (B) Tractography of the CST (same color coding as in A) superimposed on the individual FA color map (sagittal views on the left, coronal views in the middle, zoom of the tracts inferior to the decussation on the right) of a control subject and an NTN1 patient (NTN1-1.9). The CST laterality coefficient, expressed as (NF crossed – NF uncrossed)/(NF crossed + NF uncrossed), was positive for the control (0.93, indicating more connections in the crossed CST) and negative for the NTN1 patient (–0.94, indicating more connections in the uncrossed CST). (C) The CST laterality coefficients of 20 control subjects were compared with that of the NTN1-1.9 patient (Crawford-Howell t test, **P = 0.001). (D) Mean FA along the crossed CST. The mean tract from the upper brainstem to the funiculus of the upper spinal cord is represented in yellow and is superimposed on the coronal view of the FA map of the control subject. Note that the z axis displays the anatomical correspondence between the coronal view (left) and the graph of the mean FA values (right), indicating that the pyramidal decussation occurs between 17<z<25. Mean FA values increased for the NTN1-1.9 patient (diamonds) compared with values for the control subject (squares) at the level of the pyramidal decussation. Error bars represent standard errors.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts