Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Thyroid hormone resistance and increased metabolic rate in the RXR-γ–deficient mouse
Nicole S. Brown, … , Pierre Chambon, Bryan R. Haugen
Nicole S. Brown, … , Pierre Chambon, Bryan R. Haugen
Published January 1, 2000
Citation Information: J Clin Invest. 2000;106(1):73-79. https://doi.org/10.1172/JCI9422.
View: Text | PDF
Article

Thyroid hormone resistance and increased metabolic rate in the RXR-γ–deficient mouse

  • Text
  • PDF
Abstract

Vitamin A and retinoids affect pituitary-thyroid function through suppression of serum thyroid-stimulating hormone (TSH) levels and TSH-β subunit gene expression. We have previously shown that retinoid X receptor–selective (RXR-selective) ligands can suppress serum TSH levels in vivo and TSH-β promoter activity in vitro. The RXR-γ isotype has limited tissue distribution that includes the thyrotrope cells of the anterior pituitary gland. In this study, we have performed a detailed analysis of the pituitary-thyroid function of mice lacking the gene for the RXR-γ isotype. These mice had significantly higher serum T4 levels and TSH levels than did wild-type (WT) controls. Treatment of RXR-γ–deficient and WT mice with T3 suppressed serum TSH and T4 levels in both groups, but RXR-γ–deficient mice were relatively resistant to exogenous T3. RXR-γ–deficient mice had significantly higher metabolic rates than did WT controls, suggesting that these animals have a pattern of central resistance to thyroid hormone. RXR-γ, which is also expressed in skeletal muscle and the hypothalamus, may have a direct effect on muscle metabolism, regulation of food intake, or thyrotropin-releasing hormone levels in the hypothalamus. In conclusion, the RXR-γ isotype appears to contribute to the regulation of serum TSH and T4 levels and to affect peripheral metabolism through regulation of the hypothalamic-pituitary-thyroid axis or through direct effects on skeletal muscle.

Authors

Nicole S. Brown, Alexandra Smart, Vibha Sharma, Michelle L. Brinkmeier, Lauren Greenlee, Sally A. Camper, Dalan R. Jensen, Robert H. Eckel, Wojciech Krezel, Pierre Chambon, Bryan R. Haugen

×

Full Text PDF

Download PDF (1.01 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts