Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
EMC3 coordinates surfactant protein and lipid homeostasis required for respiration
Xiaofang Tang, … , Xinhua Lin, Jeffrey A. Whitsett
Xiaofang Tang, … , Xinhua Lin, Jeffrey A. Whitsett
Published October 30, 2017
Citation Information: J Clin Invest. 2017;127(12):4314-4325. https://doi.org/10.1172/JCI94152.
View: Text | PDF
Research Article Angiogenesis Pulmonology

EMC3 coordinates surfactant protein and lipid homeostasis required for respiration

  • Text
  • PDF
Abstract

Adaptation to respiration at birth depends upon the synthesis of pulmonary surfactant, a lipid-protein complex that reduces surface tension at the air-liquid interface in the alveoli and prevents lung collapse during the ventilatory cycle. Herein, we demonstrated that the gene encoding a subunit of the endoplasmic reticulum membrane complex, EMC3, also known as TMEM111 (Emc3/Tmem111), was required for murine pulmonary surfactant synthesis and lung function at birth. Conditional deletion of Emc3 in murine embryonic lung epithelial cells disrupted the synthesis and packaging of surfactant lipids and proteins, impaired the formation of lamellar bodies, and induced the unfolded protein response in alveolar type 2 (AT2) cells. EMC3 was essential for the processing and routing of surfactant proteins, SP-B and SP-C, and the biogenesis of the phospholipid transport protein ABCA3. Transcriptomic, lipidomic, and proteomic analyses demonstrated that EMC3 coordinates the assembly of lipids and proteins in AT2 cells that is necessary for surfactant synthesis and function at birth.

Authors

Xiaofang Tang, John M. Snowball, Yan Xu, Cheng-Lun Na, Timothy E. Weaver, Geremy Clair, Jennifer E. Kyle, Erika M. Zink, Charles Ansong, Wei Wei, Meina Huang, Xinhua Lin, Jeffrey A. Whitsett

×
Options: View larger image (or click on image) Download as PowerPoint
Postnatal death in Emc3-cKO mice

Postnatal death in Emc3-cKO mice

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts