Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

ADHFE1 is a breast cancer oncogene and induces metabolic reprogramming
Prachi Mishra, Wei Tang, Vasanta Putluri, Tiffany H. Dorsey, Feng Jin, Fang Wang, Donewei Zhu, Lauren Amable, Tao Deng, Shaofei Zhang, J. Keith Killian, Yonghong Wang, Tsion Z. Minas, Harry G. Yfantis, Dong H. Lee, Arun Sreekumar, Michael Bustin, Wei Liu, Nagireddy Putluri, Stefan Ambs
Prachi Mishra, Wei Tang, Vasanta Putluri, Tiffany H. Dorsey, Feng Jin, Fang Wang, Donewei Zhu, Lauren Amable, Tao Deng, Shaofei Zhang, J. Keith Killian, Yonghong Wang, Tsion Z. Minas, Harry G. Yfantis, Dong H. Lee, Arun Sreekumar, Michael Bustin, Wei Liu, Nagireddy Putluri, Stefan Ambs
View: Text | PDF
Research Article Metabolism Oncology

ADHFE1 is a breast cancer oncogene and induces metabolic reprogramming

  • Text
  • PDF
Abstract

Metabolic reprogramming in breast tumors is linked to increases in putative oncogenic metabolites that may contribute to malignant transformation. We previously showed that accumulation of the oncometabolite, 2-hydroxyglutarate (2HG), in breast tumors was associated with MYC signaling, but not with isocitrate dehydrogenase (IDH) mutations, suggesting a distinct mechanism for increased 2HG in breast cancer. Here, we determined that D-2HG is the predominant enantiomer in human breast tumors and show that the D-2HG–producing mitochondrial enzyme, alcohol dehydrogenase, iron-containing protein 1 (ADHFE1), is a breast cancer oncogene that decreases patient survival. We found that MYC upregulates ADHFE1 through changes in iron metabolism while coexpression of both ADHFE1 and MYC strongly enhanced orthotopic tumor growth in MCF7 cells. Moreover, ADHFE1 promoted metabolic reprogramming with increased formation of D-2HG and reactive oxygen, a reductive glutamine metabolism, and modifications of the epigenetic landscape, leading to cellular dedifferentiation, enhanced mesenchymal transition, and phenocopying alterations that occur with high D-2HG levels in cancer cells with IDH mutations. Together, our data support the hypothesis that ADHFE1 and MYC signaling contribute to D-2HG accumulation in breast tumors and show that D-2HG is an oncogenic metabolite and potential driver of disease progression.

Authors

Prachi Mishra, Wei Tang, Vasanta Putluri, Tiffany H. Dorsey, Feng Jin, Fang Wang, Donewei Zhu, Lauren Amable, Tao Deng, Shaofei Zhang, J. Keith Killian, Yonghong Wang, Tsion Z. Minas, Harry G. Yfantis, Dong H. Lee, Arun Sreekumar, Michael Bustin, Wei Liu, Nagireddy Putluri, Stefan Ambs

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 976 168
PDF 145 55
Figure 454 4
Supplemental data 230 14
Citation downloads 70 0
Totals 1,875 241
Total Views 2,116
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts