Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
PBX transcription factors drive pulmonary vascular adaptation to birth
David J. McCulley, … , Licia Selleri, Xin Sun
David J. McCulley, … , Licia Selleri, Xin Sun
Published December 18, 2017
Citation Information: J Clin Invest. 2018;128(2):655-667. https://doi.org/10.1172/JCI93395.
View: Text | PDF
Research Article Development Genetics

PBX transcription factors drive pulmonary vascular adaptation to birth

  • Text
  • PDF
Abstract

A critical event in the adaptation to extrauterine life is relaxation of the pulmonary vasculature at birth, allowing for a rapid increase in pulmonary blood flow that is essential for efficient gas exchange. Failure of this transition leads to pulmonary hypertension (PH), a major cause of newborn mortality associated with preterm birth, infection, hypoxia, and malformations including congenital diaphragmatic hernia (CDH). While individual vasoconstrictor and dilator genes have been identified, the coordination of their expression is not well understood. Here, we found that lung mesenchyme–specific deletion of CDH-implicated genes encoding pre–B cell leukemia transcription factors (Pbx) led to lethal PH in mice shortly after birth. Loss of Pbx genes resulted in the misexpression of both vasoconstrictors and vasodilators in multiple pathways that converge to increase phosphorylation of myosin in vascular smooth muscle (VSM) cells, causing persistent constriction. While targeting endothelin and angiotensin, which are upstream regulators that promote VSM contraction, was not effective, treatment with the Rho-kinase inhibitor Y-27632 reduced vessel constriction and PH in Pbx-mutant mice. These results demonstrate a lung-intrinsic, herniation-independent cause of PH in CDH. More broadly, our findings indicate that neonatal PH can result from perturbation of multiple pathways and suggest that targeting the downstream common effectors may be a more effective treatment for neonatal PH.

Authors

David J. McCulley, Mark D. Wienhold, Elizabeth A. Hines, Timothy A. Hacker, Allison Rogers, Ryan J. Pewowaruk, Rediet Zewdu, Naomi C. Chesler, Licia Selleri, Xin Sun

×

Figure 4

Pbx1/2 deletion affects multiple genes that control VSM contraction and relaxation.

Options: View larger image (or click on image) Download as PowerPoint

Pbx1/2 deletion affects multiple genes that control VSM contraction and...
(A) Microarray gene expression analysis indicated that multiple genes that regulate VSM contraction and relaxation are upregulated (magenta) or downregulated (green) due to loss of PBX1/2 (modified from the Kyoto Encyclopedia of Genes and Genomes [KEGG] pathway map04270; http://www.genome.jp/dbget-bin/www_bget?pathway+hsa04270). (B) qRT-PCR of VSM contraction genes indicated increased expression of genes that promote contraction: Agt (***P = 0.0006), Edn1 (**P = 0.0005), Myh11 (*P = 0.0008), and decreased expression of genes that promote relaxation: Nppc (†P = 0.007) and Adcy8 (§P = 0.002). For all statistical analyses, 4 samples were included from each group. Comparisons were made using a Student’s t test. Data represent the mean ± SEM.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts